» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЛИ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЛИ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЛИ)" читать бесплатно онлайн.








Линицкая Любовь Павловна

Лини'цкая (по мужу — Загорская) Любовь Павловна (27.12.1866, слобода Преображенская, ныне Васильковского района Днепропетровской области, — 5.2.1924, Киев), украинская советская актриса. Сценическую деятельность начала в 1886. Работала в труппах Н. К. Садовского, в товариществе под руководством И. А. Марьяненко и др. Игра Л. отличалась героическим пафосом и одновременно психологичской глубиной. Роли: Маруся Богуславка, Свиридиха, («Маруся Богуславка», «Оборона Буши» Старицкого), Татьяна, Варька («Бондаривна», «Бесталанная» Карпенко-Карого), Наталья («Лымеривна» Мирного) и др. Разоблачительной остротой отмечены комедийные роли — Проня Прокоповна («За двумя зайцами» Старицкого) и др.

  Лит.: Любов Павлiвна Лiницька. Нариси, Київ, 1957.

Линия апсид

Ли'ния апси'д в астрономии, отрезок прямой, соединяющий апсиды, т. е. две точки эллиптической орбиты небесного тела: наиболее близкую к центральному телу и наиболее удалённую от него. Эти точки лежат на концах большой оси эллипса, которая, следовательно, и есть Л. а. В орбитах планет Солнечной системы Л. а. ограничены перигелием и афелием, в орбитах Луны и искусственных спутников Земли — перигеем и апогеем, в орбитах двойных звёзд — пернастром и апоастром.

Линия (в генетике)

Ли'ния в генетике, размножающиеся половым путём родственные организмы, которые происходят, как правило, от одного предка или одной пары общих предков и воспроизводят в ряду поколений одни и те же наследственно устойчивые признаки. Характерные для Л. признаки искусственно поддерживаются путём отбора и близкородственного скрещивания. Различают чистые линии — генотипически однородное потомство самоопыляющихся растений, у которых почти все гены находятся в гомозиготном состоянии, и инбредные Л. — потомство перекрёстноопыляющегося растения, полученное путем принудительного самоопыления, или группа животных, полученная при близкородственном разведении (см. Инбридинг). Чем теснее родство родителей, тем выше степень гомозиготности потомства. И в чистых, и в инбредных Л. постоянно возникающие мутации нарушают гомозиготность. Поэтому для сохранения гомозиготности по генам, определяющим основные свойства Л., необходимо вести отбор. В животноводстве различают генеалогическую Л., т. е. группу животных, происходящую от общего предка, и заводскую Л. — однородную, качественно своеобразную, поддерживаемую отбором и подбором с использованием инбридинга группу высокопродуктивных животных, происходящую от выдающегося родоначальника и схожую с ним по конституции и продуктивности (см. Разведение по линиям). Чистые и инбредные Л. служат основой для получения высокопродуктивных гибридов в растениеводстве и животноводстве. В медико-биологических исследованиях важную роль играют Л. лабораторных животных, сохраняющие константность по определённым признакам.

  Лит.: Иогансен В. Л., О наследовании в популяциях и чистых линиях, пер. с нем., М. — Л., 1935; Медведев Н. Н., Практическая генетика, М., 1966.

  Ю. С. Демин, Е. Я. Борисенко.

Линия (геометрич. понятие)

Ли'ния (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

  1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О — центра окружности). Иногда в учебниках дают определение Л. как границы куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

  2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

  x = R cos t, y = R sin t.

  Когда параметр t пробегает отрезок 0 £ t £ 2p, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

  x = j (t), у = (t),

  где j (t), (t) — произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале D числовой оси t. С каждым значением параметра t (из интервала D) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из D, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 — значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.

  Аналогично, в трёхмерном пространстве Л. задаётся параметрически тремя уравнениями вида

  x = j (t), у = (t), z = c (t),

  где j (t), (t), c (t) — произвольные функции, непрерывные на каком-нибудь интервале. В произвольном топологическом пространстве Т (которое, в частности, может быть плоскостью, поверхностью, обычным трёхмерным пространством, функциональным пространством и т. п.) Л. параметрически задают уравнением вида

  P = j (t),

  где j — функция действительного переменного t, непрерывная на каком-либо интервале, значения которой суть точки пространства Т. Считают, что два параметрических представления задают одну и ту же Л., если они определяют один и тот же порядок следования её точек (в смысле, указанном выше).

  В анализе и топологии рассматривают обычно случай, когда область изменения параметра t есть отрезок а £ t £ b. В этом случае условие того, чтобы два параметрических представления

  Р = j (t), a £ t £ b

  P = j1(t1), a1 £ t1 £ b1,

  изображали одну и ту же Л., заключается в существовании непрерывной и строго возрастающей функции

  t1 =  f(t),

  для которой

  f(a) = a1, f(b) = b1, j (t) = j1[f(t)].

  Такое понимание термина «Л.» наиболее естественно в большинстве вопросов анализа (например, в теории криволинейных интегралов) и механики. Так как Л. здесь рассматривается вместе с порядком, в котором пробегает её точки переменная точка М при возрастании t, то при этом естественно возникает вопрос о числе прохождений переменной точки Л. через какую-либо точку пространства. Кроме простых точек, проходимых один раз, Л. может иметь кратные точки, которые проходятся несколько раз (отвечающие различным значениям параметра).

  Например, при изменении t в пределах — ¥ < t < ¥ точка с координатами

  ,

  описывает строфоиду (см. рис. «Алгебраические кривые третьего порядка», № 5), попадая в положение х = 0, у = 0 два раза при t = — 1 и t = + 1.

  3) Из аналитической геометрии известен и другой способ задания Л. на плоскости уравнением

  F(x, y) = 0;

  в пространстве — двумя уравнениями

  F(x, у, z) = 0, G(x, y, z) = 0.

  Ограничиваясь случаем плоскости, укажем лишь, как строится понятие алгебраической Л. (кривой) — Л., определяемой уравнением

  F(x, y) = 0,

  где F(x, у) — целая алгебраическая функция, т. е. многочлен како-либо степени n &sup3; 1. В этом случае считают, что два многочлена F1(x, у) и F2(x, у) определяют одну и ту же алгебраическую Л. в том и только в том случае, когда существует такая постоянная с &sup1; 0, что выполняется тождественно соотношение


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЛИ)"

Книги похожие на "Большая Советская Энциклопедия (ЛИ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЛИ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.