БСЭ БСЭ - Большая Советская Энциклопедия (МО)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (МО)"
Описание и краткое содержание "Большая Советская Энциклопедия (МО)" читать бесплатно онлайн.
Согласно квантовой механике, энергия всех видов движения в молекуле может принимать лишь определённые значения, т. е. она квантуется. Полная энергия молекулы E приближённо может быть представлена в виде суммы квантованных значений энергий трёх видов её движения:
E = E эл + E кол + E вращ . (2)
По порядку величин
где m — масса электрона, а величина М имеет порядок массы ядер атомов в молекуле, т. е. m/М ~ 10-3 —10-5 , следовательно:
E эл >> E кол >> E вращ . (4)
Обычно E эл порядка нескольких эв (несколько сотен кдж/моль ), E кол ~ 10-2 —10-1 эв, E вращ ~ 10-5 —10-3 эв.
В соответствии с (4) система уровней энергии молекулы характеризуется совокупностью далеко отстоящих друг от друга электронных уровней (различные значения E эл при E кол = E вращ = 0), значительно ближе друг к другу расположенных колебательных уровней (различные значения E кол при заданном E л и E вращ = 0) и ещё более близко расположенных вращательных уровней (различные значения E вращ при заданных E эл и E кол ). На рис. 1 приведена схема уровней двухатомной молекулы; для многоатомных молекул система уровней ещё более усложняется.
Электронные уровни энергии (E эл в (2) и на схеме рис. 1 соответствуют равновесным конфигурациям молекулы (в случае двухатомной молекулы характеризуемым равновесным значением r 0 межъядерного расстояния r , см. рис. 1 в ст. Молекула ). Каждому электронному состоянию соответствуют определённая равновесная конфигурация и определённое значение E эл ; наименьшее значение соответствует основному уровню энергии.
Набор электронных состояний молекулы определяется свойствами её электронной оболочки. В принципе значения E эл можно рассчитать методами квантовой химии , однако данная задача может быть решена только с помощью приближённых методов и для сравнительно простых молекул. Важнейшую информацию об электронных уровнях молекулы (расположение электронных уровней энергии и их характеристики), определяемую её химическим строением, получают, изучая её М. с.
Весьма важная характеристика заданного электронного уровня энергии — значение квантового числа S, характеризующего абсолютную величину полного спинового момента всех электронов молекулы. Химически устойчивые молекулы имеют, как правило, чётное число электронов, и для них S = 0, 1, 2... (для основного электронного уровня типично значение S = 0, а для возбуждённых — S = 0 и S = 1). Уровни с S = 0 называются синглетными, с S = 1 — триплетными (т. к. взаимодействие в молекуле приводит к их расщеплению на c = 2S + 1 = 3 подуровня; см. Мультиплетность ). Радикалы свободные имеют, как правило, нечётное число электронов, для них S = 1 /2 , 3 /2 , ... и типично как для основного, так и для возбуждённых уровней значение S = 1 /2 (дублетные уровни, расщепляющиеся на c = 2 подуровня).
Для молекул, равновесная конфигурация которых обладает симметрией, электронные уровни можно дополнительно классифицировать. В случае двухатомных и линейных трёхатомных молекул, имеющих ось симметрии (бесконечного порядка), проходящую через ядра всех атомов (см. рис. 2 , б), электронные уровни характеризуются значениями квантового числа l, определяющего абсолютную величину проекции полного орбитального момента всех электронов на ось молекулы. Уровни с l = 0, 1, 2, ... обозначаются соответственно S, П, D..., а величина c указывается индексом слева вверху (например, 3 S, 2 p, ...). Для молекул, обладающих центром симметрии, например CO2 и C6 H6 (см. рис. 2 , б, в), все электронные уровни делятся на чётные и нечётные, обозначаемые индексами g и u (в зависимости от того, сохраняет ли волновая функция знак при обращении в центре симметрии или меняет его).
Колебательные уровни энергии (значения Е кол ) можно найти квантованием колебательного движения, которое приближённо считают гармоническим. В простейшем случае двухатомной молекулы (одна колебательная степень свободы, соответствующая изменению межъядерного расстояния r ) её рассматривают как гармонический осциллятор ; его квантование даёт равноотстоящие уровни энергии:
E кол = h ne (u + 1/2), (5)
где ne — основная частота гармонических колебаний молекулы, u — колебательное квантовое число, принимающее значения 0, 1, 2, ... На рис. 1 показаны колебательные уровни для двух электронных состояний.
Для каждого электронного состояния многоатомной молекулы, состоящей из N атомов (N ³ 3) и имеющей f колебательных степеней свободы (f = 3N — 5 и f = 3N — 6 для линейных и нелинейных молекул соответственно), получается f т. н. нормальных колебаний с частотами ni (i = 1, 2, 3, ..., f ) и сложная система колебательных уровней:
где u i = 0, 1, 2, ... — соответствующие колебательные квантовые числа. Набор частот нормальных колебаний в основном электронном состоянии является очень важной характеристикой молекулы, зависящей от её химического строения. В определённом нормальном колебании участвуют все атомы молекулы или часть их; атомы при этом совершают гармонические колебания с одной частотой v i , но с различными амплитудами, определяющими форму колебания. Нормальные колебания разделяют по их форме на валентные (при которых изменяются длины линий связи) и деформационные (при которых изменяются углы между химическими связями — валентные углы). Число различных частот колебаний для молекул низкой симметрии (не имеющих осей симметрии порядка выше 2) равно 2, и все колебания являются невырожденными, а для более симметричных молекул имеются дважды и трижды вырожденные колебания (пары и тройки совпадающих по частоте колебаний). Например, у нелинейной трёхатомной молекулы H2 O (рис. 2 , а) f = 3 и возможны три невырожденных колебания (два валентных и одно деформационное). Более симметричная линейная трёхатомная молекула CO2 (рис. 2 , б) имеет f = 4 — два невырожденных колебания (валентных) и одно дважды вырожденное (деформационное). Для плоской высокосимметричной молекулы C6 H6 (рис. 2 , в) получается f = 30 — десять невырожденных и 10 дважды вырожденных колебаний; из них 14 колебаний происходят в плоскости молекулы (8 валентных и 6 деформационных) и 6 неплоских деформационных колебаний — перпендикулярно этой плоскости. Ещё более симметричная тетраэдрическая молекула CH4 (рис. 2 , г) имеет f = 9 — одно невырожденное колебание (валентное), одно дважды вырожденное (деформационное) и два трижды вырожденных (одно валентное и одно деформационное).
Вращательные уровни энергии можно найти квантованием вращательного движения молекулы, рассматривая её как твёрдое тело с определёнными моментами инерции . В простейшем случае двухатомной или линейной многоатомной молекулы её энергия вращения
где I — момент инерции молекулы относительно оси, перпендикулярной оси молекулы, а М — вращательный момент количества движения. Согласно правилам квантования,
где вращательное квантовое число J = 0, 1, 2, ..., и, следовательно, для E вращ получили:
где вращательная постоянная определяет масштаб расстояний между уровнями энергии, уменьшающийся с увеличением масс ядер и межъядерных расстояний. На рис. 1 показаны вращательные уровни для каждого электронно-колебательного состояния.
Различные типы М. с. возникают при различных типах переходов между уровнями энергии молекул. Согласно (1) и (2)
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (МО)"
Книги похожие на "Большая Советская Энциклопедия (МО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (МО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (МО)", комментарии и мнения людей о произведении.




























