БСЭ БСЭ - Большая Советская Энциклопедия (МО)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (МО)"
Описание и краткое содержание "Большая Советская Энциклопедия (МО)" читать бесплатно онлайн.
Подобным же образом можно при помощи М. с. определять структуру разнообразных классов органических и неорганических молекул, вплоть до весьма сложных, например молекул полимеров.
Лит.: Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Герцберг Г., Спектры и строение двухатомных молекул, пер. с англ., М., 1949; его же, Колебательные и вращательные спектры многоатомных молекул, пер. с англ., М., 1949; его же, Электронные спектры и строение многоатомных молекул, пер. с англ., М., 1969; Применение спектроскопии в химии, под ред. В. Веста, пер. с англ., М., 1959.
М. А. Ельяшевич.
Рис. 4. Вращательное расщепление электронно-колебательной полосы 3805 молекулы N2 .
Рис. 1. Схема уровней энергии двухатомной молекулы: а и б — электронные уровни; v ' и v '' — квантовые числа колебательных уровней. J ' и J '' — квантовые числа вращательных уровней.
Рис. 5. Схема электронных уровней и переходов для молекулы бензола. Энергия уровней дана в эв . С — синглетные уровни; Т — триплетный уровень. Чётность уровня указана буквами g и u. Для систем полос поглощения указаны примерные области длин волн в , более интенсивные системы полос обозначены более жирными стрелками.
Рис. 2. Равновесные конфигурации молекул: а — H2 O; б — CO2 ; в — C6 H6 ; г — CH4 . Числами указаны длины связей (в ) и величины валентных углов.
Рис. 3. Электронно-колебательный спектр молекулы N2 в близкой ультрафиолетовой области; группы полос соответствуют различным значениям Dv = v ' — v ''.
Молекулярный вес
Молекуля'рный вес, то же, что молекулярная масса .
Молекулярный генератор
Молекуля'рный генера'тор, устройство, в котором когерентные электромагнитные колебания генерируются за счёт вынужденных квантовых переходов молекул из исходного энергетического состояния в состояние с меньшей внутренней энергией (см. Когерентность , Квантовая электроника ). М. г. — первый квантовый генератор, созданный в 1954 Н. Г. Басовым и А. М. Прохоровым (СССР) и независимо от них Ч. Таунсом , Дж. Гордоном и Х. Цейгером (США). Оба варианта этого М. г. работали на молекулах аммиака NH3 и генерировали электромагнитные колебания с частотой 24840 Мгц (длина волны l = 1,24 см ).
Для возбуждения генерации когерентных колебаний необходимо выполнение двух основных условий: в рабочем объёме прибора количество частиц в исходном состоянии должно быть больше, чем в состоянии с меньшей внутренней энергией (инверсия населённостей ), должна быть обеспечена связь между частицами, излучающими в различные моменты времени (положительная обратная связь ). В М. г. первое условие осуществляется электростатической сортировкой пучка молекул, а обратная связь при помощи объёмного резонатора , настроенного на частоту, равную частоте излучения, сопровождающего переход молекулы из исходного энергетического состояния в конечное. Пучок молекул формируется при вылете молекул из источника в вакуум через узкие отверстия или капилляры (см. Молекулярные и атомные пучки ).
Электростатическая сортировка молекул по энергетическим состояниям в М. г. основана на том, что молекулы, обладающие электрическим дипольным моментом (например, молекулы NH3 ), пролетая через неоднородное электрическое поле, отклоняются этим полем от прямолинейного пути по-разному в зависимости от энергии (см. Штарка эффект ). В первом М. г. сортирующая система представляла собой квадрупольный конденсатор, состоящий из 4 параллельных стержней специальной формы, соединённых попарно с высоковольтным выпрямителем (рис. ). Электрическое поле такого конденсатора весьма неоднородно, что вызывает искривление траекторий молекул NH3 , летящих вдоль его оси. Свойства молекул NH3 таковы, что те из них, которые находятся в верхнем из используемой пары энергетических состояний, отклоняются к оси конденсатора и попадают внутрь объёмного резонатора. Молекулы, находящиеся в нижнем состоянии, отбрасываются в стороны и не попадают в резонатор. Отсортированный т. о. пучок содержит молекулы, находящиеся в верхнем энергетическом состоянии. Попадая внутрь резонатора, такие молекулы излучают под воздействием электромагнитного поля резонатора (вынужденное излучение). Излученные фотоны остаются внутри резонатора, усиливая его поле и увеличивая вероятность вынужденного излучения для молекул, пролетающих позже. Если интенсивность пучка активных молекул такова, что вероятность вынужденного излучения фотона больше, чем вероятности поглощения фотона в стенках резонатора, то возникает процесс самовозбуждения — быстро возрастает интенсивность электромагнитного поля резонатора на частоте перехода за счёт внутренней энергии молекул пучка. Это возрастание прекращается, когда поле в резонаторе достигает величины, при которой вероятность вынужденного испускания становится столь большой, что за время пролёта резонатора успевает испустить фотон как раз половина молекул пучка. При этом для пучка в целом вероятность поглощения становится равной вероятности вынужденного испускания (см. Насыщения эффект ). Мощность, генерируемая М. г. на пучке молекул NH3 , составляет 10-8 вт, стабильность частоты генерации в пределах 10-7 —10-11 .
В дальнейшем были созданы М. г. на ряде других дипольных молекул, работающие в диапазоне сантиметровых и миллиметровых волн, и квантовые генераторы на пучке атомов водорода, работающие на длине волны 21 см. Эти приборы, как и квантовые усилители радиодиапазона, иногда называют мазерами . Существует несколько конструктивных вариантов М. г., отличающихся устройством сортирующих систем, количеством резонаторов и т. п. К М. г. относят также квантовые генераторы, в которых инверсия населённости уровней молекул достигается не сортировкой, а другими способами, например воздействием вспомогательного электромагнитного поля (накачки), электрическим разрядом и др. В этом смысле к М. г. можно отнести и квантовые генераторы оптического диапазона (лазеры ), рабочим веществом которых служат молекулярные газы (см. Газовый лазер ).
Лит.: Ораевский А. Н., Молекулярные генераторы, М., 1964; Григорьянц В. В., Жаботинский М. Е., Золин В. Ф., Квантовые стандарты частоты, М., 1968; Зингер Дж., Мазеры, М., 1961; Сигмен А., Мазеры, пер. с англ., М., 1966.
М. Е. Жаботинский.
Сортировка молекул по энергетическим состояниям с помощью квадрупольного конденсатора.
Молекулярных орбиталей метод
Молекуля'рных орбита'лей ме'тод, важнейший метод квантовой химии . В основе метода лежит представление о том, что каждый электрон молекулы описывается своей волновой функцией — молекулярной орбиталью (МО). Вследствие невозможности точно решить Шрёдингера уравнение для систем с двумя и более электронами, способ получения выражения для МО неоднозначен. На практике чаще всего каждую МО yi представляют как ЛКАО — линейную комбинацию атомных орбиталей (AO) cр (приближение МО ЛКАО) вида yi = Sp cip cp , где i — номер МО, р — номер АО, cip — алгебраические коэффициенты, являющиеся мерой вкладов индивидуальных АО в МО.
Это приближение основано на предположении, что в окрестности любого атомного ядра МО yi должна напоминать составляющие её АО cр этого атома. Поскольку при соединении атомов в молекулу изменения состояния электронов по сравнению с исходным можно считать не слишком радикальными, то в рассматриваемом приближении по-прежнему пользуются атомными волновыми функциями (хотя и не обязательно с параметрами свободных атомов). Вместе с тем описание электрона с помощью ЛКАО отображает те качественные изменения, которые произошли в состоянии электрона при образовании молекулы: о любом из электронов молекулы нельзя более утверждать, что он находится у определённого атома. Подобно тому, как в атоме водорода электрон можно с различной вероятностью обнаружить в разных точках околоядерного пространства, так и в молекуле электрон «размазан» по всей молекуле в целом.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (МО)"
Книги похожие на "Большая Советская Энциклопедия (МО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (МО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (МО)", комментарии и мнения людей о произведении.




























