» » » » Вокруг Света - Журнал «Вокруг Света» №3 за 2004 год


Авторские права

Вокруг Света - Журнал «Вокруг Света» №3 за 2004 год

Здесь можно скачать бесплатно " Вокруг Света - Журнал «Вокруг Света» №3 за 2004 год" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая документальная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Вокруг Света - Журнал «Вокруг Света» №3 за 2004 год
Рейтинг:
Название:
Журнал «Вокруг Света» №3 за 2004 год
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Вокруг Света» №3 за 2004 год"

Описание и краткое содержание "Журнал «Вокруг Света» №3 за 2004 год" читать бесплатно онлайн.








Феликс Ванкель запатентовал роторно-поршневой тип двигателя в 1934 году. В его корпусе овальной формы движутся не поршни на шатунах, а треугольный, с выпуклыми сторонами ротор. Он описывает внутри корпуса кривую, называемую эпитрохоидой, при этом его вершины, плотно прилегая к стенкам корпуса, образуют 3 отдельные камеры сгорания. В каждой из них последовательно происходит обычный 4-тактный цикл. Из-за отсутствия возвратно-поступательного движения такой мотор почти не вибрирует, а его рабочие обороты значительно выше, чем у поршневого ДВС.

Единственная фирма, выпускающая автомобили с «ванкелем», – японская Mazda. Она довела конструкцию мотора Renesis до совершенства и в награду за упорство в 2003 году удостоилась Гран-при конкурса «Двигатель года». Присвоено оно двухсекционному, то есть с двумя роторами в отдельных корпусах, мотору. К каждому подведено по два впускных и по два выпускных трубопровода. Роторы обслуживают в общей сложности шесть форсунок – четыре во впускных трубопроводах и две непосредственного впрыска. При крошечном рабочем объеме 2x0,654 л двигатель развивает огромную мощность в 250 л. с. при 8 500 об/мин и имеет максимальный крутящий момент 216 Нм при 5 500 об/мин.

Чьи «лошади»?

«Скотину в Америке и Европе в старину кормили по-разному» – это приходит на ум, когда узнаешь, что HP, то есть horse power, вовсе не равна PS, то есть Pferdestarke, или, скажем, CV (cheval vapeur). И то, и другое, и третье переводятся как лошадиная сила. Зародилась эта величина в шахтах Великобритании и оценивала работу лошади за единицу времени: перемещение груза в 200 фунтов на 165 футов за минуту. Измерение мощности в «лошадях» – скорее дань традиции, поскольку существует общепринятая метрическая величина – киловатт (кВт). Один киловатт мощности равен 1,35962 л. с., но тот же киловатт равен 1,34102 американо-британской лошадиной силы HP. Более того, сегодня действуют шесть стандартов измерения мощности автомобильного двигателя. В США организация Society of Automotive Engineers (SAE) рекомендует измерять мощность двигателя без учета ее затрат на привод генератора, потерь в системе выпуска отработавших газов и прочих затрат, связанных с функционированием навесного оборудования.

Второй важный показатель работы двигателя – крутящий момент, характеризует его способности по части вращения колес. В метрической системе крутящий момент измеряется в Ньютонах, умноженных на метр. Оба показателя – и мощность, и крутящий момент – приводятся в сочетании с числом оборотов коленчатого вала двигателя в минуту, при котором они достигаются.

Модульный мотор

То или иное расположение цилиндров применяют, чтобы получить максимальную отдачу с каждой единицы площади, занимаемой мотором под капотом. Еще в начале 1980-х годов фирма Volkswagen создала так называемые V-образно-рядные двигатели VR6 и VR5 – компактные агрегаты с увеличенным числом цилиндров. Небольшой, 15°, развал между рядами цилиндров (обычно угол составляет 60 или 90°) позволил применить для них общую головку. Затем на основе этих разработок была спроектирована серия модульных W-образных двигателей, объединяющих под углом в 72° две цилиндро-поршневые группы от моторов VR-типа.

Проблема заключалась в том, что на коленчатом валу примерно той же длины в этом случае размещалось вдвое больше шатунов, чем в VR-двигателе. Поэтому их пришлось делать тоньше. Шатун подвергается в двигателе наибольшим нагрузкам сжимающего, растягивающего и изгибающего вида, и слишком тонкие шатуны на повышенных оборотах начинают «поигрывать». В двигателе W16 колоссальной мощности в 1001 л.с. для спортивного Bugatti ЕВ16/4 Veyron влияние инерционных моментов на шатуны сократили, увеличив развал между двумя VR-rpyппaми до 90° и снизив скорость поршня до 17,2 м/с. Размеры двигателя при этом выросли, но все равно остались завидно малыми для агрегата с такими показателями: его длина 710, а ширина 767 мм.

«Фазовращатели»

В быстроходных современных двигателях выпускные клапаны начинают открываться для отвода отработавших газов, когда те еще способны на полезную работу. И не успевает поршень вытолкнуть остатки продуктов сгорания из цилиндра, как открываются впускные клапаны. При этом часть отработавших газов смешивается с новой порцией топливовоздушной смеси, что ухудшает ее качество. Нежелательное на первый взгляд явление, называемое перекрытием фаз, оказывается, можно обратить во благо.

Если оставить впускные клапаны открытыми подольше, в камеру сгорания попадет больше смеси. Это обеспечит более ровную, устойчивую работу двигателя на малых оборотах коленчатого вала, а при высокой частоте вращения улучшит его тяговые возможности.

Задержка закрытия выпускных клапанов позволит на такте впуска завлечь обратно в цилиндр некое количество отработавших газов, чтобы вновь пустить их в дело, что окажет благоприятное влияние на показатели токсичности выхлопа.

Итак, да здравствуют приспособления, изменяющие режим работы впускных и выпускных клапанов и увеличивающие длительность их открывания!

Принцип действия таких «фазовращателей» состоит в дополнительном проворачивании распределительного вала вокруг его оси на несколько градусов. У компании BMW подобное устройство называется (в зависимости оттого, на одном или двух валах установлено) Vanos или Double Vanos. В 2001 году фирма внедрила еще более совершенное устройство – Valvetronic, продлевающее фазу открытия впускных клапанов за счет изменения плеча коромысел. Оно настолько улучшило газообмен, что позволило отказаться от анахронизма карбюраторной эпохи – дроссельной заслонки во впускном канале двигателя, регулирующей объем поступающего в цилиндр воздуха. Мотор с Valvetronic в среднем на 10% экономичнее своего «заслоночного» аналога и быстрее откликается на нажатие педали газа.

Улитка на впуске

Для получения наиболее оптимальных характеристик в широком диапазоне оборотов коленчатого вала современные двигатели оснащают также и впускными трубопроводами переменной длины. Отдаленно принцип действия такой системы напоминает печную трубу с заслонкой. Пока обороты коленчатого вала невелики, воздушный поток поступает через длинное колено, обеспечивая двигателю наилучшие тяговые возможности. На короткое колено переключаются при больших оборотах, и это увеличивает мощность. А компания BMW на моделях 735i/745i применяет и вовсе бесступенчатый регулятор впускного трубопровода, похожий на гигантскую улитку. Его длина варьируется от 231 до 673 мм. Цилиндрический воздухораспределитель способен менее чем за секунду повернуться в полости впускного трубопровода на 236°, изменяя тем самым его рабочую длину. С целью уменьшения массы двигателя впускные трубопроводы нередко изготавливают из полиамида.

Оптимальное соотношение воздуха и бензина – 14,5:1 называют стехиометрическим. Поэтому чтобы «затолкать и сжечь» в цилиндрах больше бензина за единицу времени, приходится увеличивать и весовое содержание воздуха. Для этого используют специальные нагнетатели, среди которых наибольшее распространение получили турбонаддувы. В них для разгона насосного колеса используется энергия отработавших газов, вращающих турбину. Работу этих устройств также стараются оптимизировать. Например, изменяя геометрию лопаток турбины, а также направляя излишек отработавших газов в обход лопаток. Турбокомпрессору, как и другим деталям двигателя, тоже свойственна инерционность, ухудшающая характеристики двигателя «в низах» (то есть при малых оборотах). Явление получило название «турбояма». Для раскрутки турбины компания Saab на модели 9-3 использует такой прием: независимо от перемещения педали «газа» в начале езды в двигатель поступает дополнительная порция смеси. Поток отработавших газов ненадолго увеличивается, и они быстрее раскручивают механизм нагнетателя.

Газодинамические процессы будущего

Каким парадоксальным это ни покажется, но и поджечь топливно-воздушную смесь в цилиндре отнюдь не просто. Она может потухнуть. По этой причине в зоне свечи зажигания стараются уменьшить турбулентность смеси. Возможно и обратное – смесь самостоятельно детонирует, хлестнув по стенкам камеры сгорания, клапанам и поршню волной давления с разрушающей силой. На скорость сгорания влияет целый ряд параметров: температура, напряжение зажигания, качественный состав смеси и прочее. Конструкторы всегда мечтали приспособить двигатель к работе на обедненной смеси. В некоторых моторах весовое соотношение воздуха и бензина достигает 20:1 и даже 25:1. Это стало возможным с появлением системы впрыска, в которой форсунки распыляют порцию бензина непосредственно в камеру сгорания. Технология подсмотрена у дизельного двигателя. Запатентовавшая ее первой компания Mitsubishi (так называемый процесс GDI) предлагает пользоваться режимом сверхбедной (до 40:1) смеси для экономичной и экологичной езды в городском режиме. Впрыск топлива происходит после того, как поршень уже начал движение к верхней мертвой точке, попутно закручивая сжимаемый в полости цилиндра воздух. Благодаря особому гребню на рабочей поверхности (называемой днищем) поршня центр этого маленького смерча фокусируется возле свечи зажигания. Туда впрыскивается порция топлива и производится электрический разряд. Еще своеобразнее процесс протекает, когда в цилиндр на такте впуска распыляют предварительную, «пилотную» порцию топлива. Она смешивается с воздухом в ничтожной пропорции 60:1, попутно снижая температуру в цилиндре. Это уменьшает вероятность детонации. Затем происходят впрыскивание основной порции топлива и его воспламенение. Система GDI на 10—15% экономичнее моторов, оборудованных впрыском обычного типа.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Вокруг Света» №3 за 2004 год"

Книги похожие на "Журнал «Вокруг Света» №3 за 2004 год" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Вокруг Света

Вокруг Света - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Вокруг Света - Журнал «Вокруг Света» №3 за 2004 год"

Отзывы читателей о книге "Журнал «Вокруг Света» №3 за 2004 год", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.