» » » » Валентин Ирхин - Уставы небес, 16 глав о науке и вере


Авторские права

Валентин Ирхин - Уставы небес, 16 глав о науке и вере

Здесь можно скачать бесплатно "Валентин Ирхин - Уставы небес, 16 глав о науке и вере" в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Валентин Ирхин - Уставы небес, 16 глав о науке и вере
Рейтинг:
Название:
Уставы небес, 16 глав о науке и вере
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Уставы небес, 16 глав о науке и вере"

Описание и краткое содержание "Уставы небес, 16 глав о науке и вере" читать бесплатно онлайн.



 В книге проведен сравнительный анализ естественнонаучных и традиционных религиозных взглядов на проблемы, волнующие каждого мыслящего человека. Авторы широко привлекают и цитируют важнейшие религиозные, философские и эзотерические первоисточники, большинство из которых практически недоступны массовому читателю.

Благодаря широкому охвату материала и объективному изложению различных точек зрения книга будет интересна всем, кто стремится к углубленному самообразованию и духовному росту.






В математике, дополненной философией и психологией, я нашел то, что обычно дает человеку религия. Я осознал в этом присутствие реальности в форме необычайной чистоты, и предел внутреннего проникновения, которого я тогда достиг, хотя мне и недоставало соответствующего понимания и различения, не был превзойден с тех пор никогда, вплоть до седьмого числа прошлого месяца... То, чего я достиг благодаря математике на языке символов - а это был редкий уровень сознания, - должна была дополнить философия, так чтобы это могло стать ясным для понимания. Философия добавила способность размышления и сосредоточения к чистому свету математики (Ф. Меррелл-Вольф, Пути в иные измерения, с.145-146).

Вспомним также, что Эйнштейн в детстве воспринял "Начала" Евклида как "священную книгу по геометрии".

Ряд крупных исследователей, пытающихся всерьез понять статус математических понятий и причину их эффективности, склоняется к тому или иному варианту платонизма. Так, выдающийся английский ученый - специалист в области математической физики Р. Пенроуз посвятил значительную часть своих книг "Новый разум императора" и "Тени разума" (см. список литературы) аргументации в пользу реального существования мира математических идей. Математические понятия, выражающие "гармонию" мира, вечны и неуничтожимы подобно платоновским идеям:

В настроенной лире гармония - это нечто невидимое, бестелесное, прекрасное и божественное, а сама лира и струны - тела, то есть нечто телесное, сложное, земное и сродное смертному. Представь себе теперь, что лиру разбили или же порезали и порвали струны, - приводя те же доводы, какие приводишь ты, кто-нибудь будет упорно доказывать, что гармония не разрушилась и должна по-прежнему существовать. Быть того не может, скажет такой человек, чтобы лира с разорванными струнами и сами струны - вещи смертной природы - все еще существовали, а гармония, сродная и близкая божественному и бессмертному, погибла, уничтожилась раньше, чем смертное. Нет, гармония непременно должна существовать, и прежде истлеют без остатка дерево и жилы струн, чем потерпит что-нибудь худое гармония (Платон, Федон; см. также вынесенные в эпиграф строки Мандельштама).

Близких взглядов на сущность математических идей и понятий придерживался В. Гейзенберг (см. книгу "Физика и философия. Часть и целое"). Другой выдающийся физик, В. Паули, полагал, что более правильным образом для того, чтобы охарактеризовать статус математических понятий, являются юнговские архетипы. В отличие от платоновских идей, они имеют динамический характер и не могут рассматриваться как вечные и неизменные, однако также принадлежат к некоторой реальности за пределами индивидуальных сознаний (см. книгу К. Лаурикайнена). Высокую оценку математики можно найти и в оккультной литературе.

Главный Источник чистой математики - Высшее, или Трансцендентное Сознание, и в этом причина, почему выводы всеобщего характера можно недвусмысленно передать на языке чистой математики... В определенном смысле, чистая математика далеко опередила сейчас то Сознание, которое реально возможно для человека (Ф. Меррелл-Вольф, Пути в иные измерения, с.280, 293).

В средние века вопрос об универсалиях (идеальных, общих понятиях) обсуждался в бурных и долгих спорах схоластов - реалистов и номиналистов: первые отстаивали их реальное (онтологическое) существование, а последние признавали их только в мышлении (как имена, символы единичных сущностей). Эти споры так ни к чему и не привели, а крайние точки зрения были осуждены церковью (особенно в связи с догматами о причастии и св. Троицей). Взгляды на математику Пенроуза и его единомышленников могут быть сопоставлены со средневековым реализмом.

"Номиналистский" подход в вопросе об основаниях математики состоит в предположении, что математические понятия являются результатом обобщения и абстрагирования свойств реального физического мира. Логически возможен и "субъективно-идеалистический" подход, рассматривающий математические конструкции как произвольные творения человеческого ума, однако в этом случае вопрос о причинах "непостижимой эффективности" математики по-видимому не может быть даже разумно сформулирован. Как и вообще в современной науке, наиболее распространен сейчас по-видимому "позитивистский" подход, когда вопросы о мировоззренческом статусе используемых понятий и методов считаются ненаучными и бессмысленными. Применительно к математике, такой подход состоит в рассмотрении математических теорий как некоторых формальных конструкций:

В этом смысле математика рассматривает отношения в гипотетически-дедуктивном плане, не связывая себя никакой конкретной материальной интерпретацией. Ее интересует не истинность аксиом, а лишь их непротиворечивость... "Математика - это наука, извлекающая определенные следствия" - сказал Б. Пирс в 1870 г., и это определение оставалось в моде на протяжении нескольких десятилетий. Мне кажется, что оно содержит весьма скудную информацию относительно подлинной природы математики... (Г. Вейль, Математическое мышление, М.: Наука, 1989, с. 21).

К подобным формалистическим подходам относится прежде всего аксиоматический метод, который пропагандировался и развивался на рубеже XIX и XX веков выдающимся немецким математиком Д. Гильбертом. Известно его шутливое (?) высказывание, что при изложении евклидовой геометрии можно везде заменить слова "точки", "прямые" и "плоскости" на "столы", "стулья" и "пивные кружки" (через два стола можно провести стул, и притом только один замечательно!). В широко известном списке "проблем Гильберта" присутствовала даже проблема аксиоматизации физики. Аналогичный подход развивался Расселом и Уайтхедом по отношению к самой математике. По словам Б.Рассела,

Тот факт, что вся математика есть символическая логика, является одним из величайших открытий нашего времени (Принципы математики).

Такой подход сразу после своего возникновения вызвал резкие возражения ряда крупнейших математиков, прежде всего, А. Пуанкаре:

Настоящее математическое рассуждение есть настоящая индукция, во многих отношениях отличная от индукции физической, но, как и она, идущая от частного к общему. Все усилия, направленные на то, чтобы опрокинуть этот порядок и свести математическую индукцию к правилам логики, закончились без успеха, и эту неудачу трудно скрыть под маской особого языка, недоступного профанам (А. Пуанкаре, О науке, с.402,403).

Будущее развитие математики и логики действительно показало недостаточность гильбертовского подхода даже в пределах математики (не говоря уже об "аксиоматизации физики", см. гл.6). Мы имеем в виду прежде всего знаменитую теорему Геделя, согласно которой даже в арифметике натуральных чисел существуют утверждения, неопровержимые и недоказуемые на основе любого конечного набора аксиом. (Приведенная здесь формулировка не вполне точна и нуждается в многочисленных пояснениях; см., например, упомянутые выше книги Р. Пенроуза или популярно написанную брошюру В.А. Успенского "Теорема Геделя о неполноте", М., Наука, 1982; более систематическое изложение можно найти, например, в учебнике С. Клини "Математическая логика", М., Мир, 1973). Близкое (и в действительности эквивалентное) утверждение состоит в существовании алгоритмически неразрешимых задач, то есть таких задач, которые в принципе не могут быть решены никаким компьютером, действующим на основе фиксированного набора правил. (Известно много конкретных примеров таких задач; скажем, не существует общего способа определить, можно или нельзя вымостить всю плоскость без зазоров, используя только многоугольные плитки из заданного конечного набора). Тем самым, математика неизбежно должна быть содержательной и "человеческой" (или, согласно платонистским взглядам, сверхчеловеческой), но ни в коем случае не "компьютерной", то есть бездумно выводимой из фиксированного набора правил:

Вы [сторонники взглядов Рассела и Гильберта] даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи - единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках. Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет (А. Пуанкаре, О науке, с.390).

Различие подходов и мировоззрений в вопросе об основаниях математики особенно ярко проявляется при рассмотрении проблем, связанных с идеей бесконечности. "Стандартная" математика XX века базируется на теории множеств, разработанной в XIX веке Г. Кантором (а говоря более технически на так называемой системе аксиом Цермело-Френкеля). Согласно Кантору, существуют разные степени (мощности) бесконечности: бесконечность счетных множеств, таких, как ряд натуральных чисел, бесконечность континуума, например, отрезка единичной длины (ту же мощность имеют множества точек ограниченных и неограниченных тел в пространстве любой размерности), и бесконечности более высокого порядка. Последние могут быть получены как множество всех подмножеств исходного бесконечного множества.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Уставы небес, 16 глав о науке и вере"

Книги похожие на "Уставы небес, 16 глав о науке и вере" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Валентин Ирхин

Валентин Ирхин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Валентин Ирхин - Уставы небес, 16 глав о науке и вере"

Отзывы читателей о книге "Уставы небес, 16 глав о науке и вере", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.