П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Курс общей астрономии"
Описание и краткое содержание "Курс общей астрономии" читать бесплатно онлайн.
1000 пс) часто встречается в спиральных рукавах Галактики (см. §168) вместе с газовыми туманностями, образуя так называемые газово-пылевые комплексы. Исследования изменения поглощения с расстоянием в каком-либо определенном направлении показывают, что пыль сосредоточена в отдельных облаках, каждое из которых в среднем имеет размер 5-10 пс и поглощает процентов 20 проходящего через него света. Это соответствует ослаблению на 0m, 25, что раз в шесть меньше среднего ослабления света в окрестностях Солнца, рассчитанного на 1 кпс. Поэтому в отдельном облаке на луче зрения столько же вещества, сколько в среднем приходится на . При размерах облаков 5-10 пс это означает, что плотность пыли в отдельных облаках должна превышать среднюю в несколько десятков раз (как мы видели, в “Угольном Мешке” даже в 100 раз). Еще большей величины она достигает в маленьких (размером несколько десятых долей парсека) плотных образованиях, называемых глобулами и часто наблюдаемых в виде темных круглых деталей на фоне светлых туманностей. Концентрация пыли в них в десятки и сотни раз больше, чем даже в самых плотных пылевых облаках. Мы видим, что плотность отдельных областей межзвездной среды сильно меняется, причем, как правило, она тем больше, чем меньше ее размеры. Поэтому возможно, что сжатие межзвездных облаков в плотные туманности в конечном счете приводит к образованию звезд. Однако значительно более важную роль, чем пыль, в этом процессе играет газ, также присутствующий в диффузной межзвездной среде. Количество межзвездного газа в среднем в 100 раз больше, чем пыли.
§ 168. Межзвездный газ
Газовые туманности. Самая известная газовая туманность – в созвездии Ориона (рис. 229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света.
В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Е, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного
кислорода О II с длинами волн около 3727 Е, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т.е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется
флуоресценцией). Таким образом, в туманности происходит как бы “дробление” ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра. Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка , что можно проверить по тепловому радиоизлучению газа. Количество квантов, излучаемых в какой-либо спектральной линии, в конечном счете пропорционально числу рекомбинаций, т.е. количеству столкновений электронов с ионами. В сильно ионизованном газе концентрация и тех и других одинакова, т.е. Поскольку согласно (7.18) частота столкновений одной частицы пропорциональна п, общее число столкновений всех ионов с электронами в единице объема пропорционально произведению nine, т.е. Следовательно, общее число квантов, излучаемых туманностью, или ее яркость на небе – пропорциональна , просуммированному вдоль луча зрения. Для однородной туманности протяженностью L, это дает . Произведение называется мерой эмиссии и является важнейшей характеристикой газовой туманности: ее значение легко получить из непосредственных наблюдений яркости туманности. Вместе с тем мера эмиссии связана с основным физическим параметром туманности – плотностью газа. Таким образом, измеряя меру эмиссии газовых туманностей, можно оценить концентрацию частиц пе, которая оказывается порядка 10 2-10 3 см –3 и даже больше для самых ярких из них. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы. Необычайно сильная разреженность газа объясняет появление в его спектре запрещенных линий, сравнимых по своей интенсивности с разрешенными. В обычном газе возбужденные атомы не успевают излучить запрещенную линию потому, что гораздо раньше, чем это произойдет, они столкнутся с другими частицами (в первую очередь электронами) и отдадут им свою энергию возбуждения без излучения кванта. В газовых туманностях при температуре 104 °K средняя тепловая скорость электронов достигает 500 км/сек и время между столкновениями, вычисленное по
формуле (7.17) при концентрации ne = 102 см –3, оказывается 2Ч106 сек, т.е.
немногим меньше месяца, что в миллионы раз превышает “время жизни” атома в возбужденном состоянии для большинства запрещенных переходов. Зоны H I и Н II. Как мы только что видели, горячие звезды на больших расстояниях вокруг себя ионизуют газ. Поскольку в основном это водород, ионизуют его главным
образом лаймановские кванты с длиной волны короче 912 Е. Но в большом количестве их могут дать только звезды спектральных классов О и В0, у которых эффективные
температуры Tэфф і 3Ч104 °K и максимум излучения расположен в ультрафиолетовой части спектра. Расчеты показывают, что эти звезды способны ионизовать газ с концентрацией 1 атом в 1 см3 до расстояний нескольких десятков парсеков. Ионизованный газ прозрачен к ультрафиолетовому излучению, нейтральный, наоборот, жадно его поглощает. В результате окружающая горячую звезду область ионизации (в однородной среде это шар!) имеет очень резкую границу, дальше которой газ остается нейтральным. Таким образом, газ в межзвездной среде может быть либо полностью ионизован, либо нейтрален. Первые области называются зоны Н II, вторые
– зоны H I. Горячих звезд сравнительно мало, а потому газовые туманности составляют ничтожную долю (около 5%) всей межзвездной среды. Нагрев областей Н I происходит за счет ионизующего действия космических лучей, рентгеновских квантов и суммарного фотонного излучения звезд. При этом в первую очередь ионизуются атомы углерода. Излучение ионизованного углерода является основным механизмом охлаждения газа в зонах Н I. В результате должно установиться равновесие между потерей энергии и ее поступлением, которое имеет место при двух температурных режимах, осуществляющихся в зависимости от значения плотности. Первый из них, когда температура устанавливается в несколько сотен градусов, реализуется в разово-пылевых облаках, где плотность относительно велика, второй – в пространстве между ними, в котором разреженный газ нагревается до нескольких тысяч градусов. Области с промежуточными значениями плотности оказываются неустойчивыми и первоначально однородный газ неизбежно должен разделиться на две фазы – сравнительно плотные облака и окружающую их весьма разреженную среду. Таким образом, тепловая неустойчивость является
важнейшей причиной “клочковатой” и облачной структуры межзвездной среды. Межзвездные линии поглощения. Существование холодного газа в пространстве между звездами было доказано в самом начале XX в. немецким астрономом Гартманом, изучившим спектры двойных звезд, в которых спектральные линии, как отмечалось в § 157, должны испытывать периодические смещения. Гартман обнаружил в спектрах некоторых звезд (особенно удаленных и горячих) стационарные (т.е. не изменявшие своей длины волны) линии H и К ионизованного кальция. Помимо того, что их длины волн не менялись, как у всех остальных линий, они отличались еще своей меньшей шириной. Вместе с тем, у достаточно горячих звезд линии Н и К вообще отсутствуют. Все это говорит о том, что стационарные линии возникают не в атмосфере звезды, а обусловлены поглощением газа в пространстве между звездами. Впоследствии обнаружились межзвездные линии поглощения и других атомов: нейтрального кальция, натрия, калия, железа, титана, а также некоторых молекулярных соединений. Однако наиболее полным спектроскопическое исследование холодного межзвездного газа стало возможным благодаря внеатмосферным наблюдениям межзвездных линий поглощения в далекой ультрафиолетовой части спектра, где сосредоточены резонансные линии важнейших химических элементов, в которых, очевидно, сильнее всего должен поглощать “холодный” газ. В частности, наблюдались резонансные линии водорода (La), углерода, азота, кислорода, магния, кремния и других атомов. По интенсивностям резонансных линий можно получить наиболее надежные данные о химическом составе. Оказалось, что состав межзвездного газа в общем близок к стандартному химическому составу звезд, хотя некоторые тяжелые элементы содержатся в нем в меньшем количестве. Исследование межзвездных линий поглощения с большой дисперсией позволяет заметить, что чаще всего они распадаются на несколько отдельных узких компонентов с различными доплеровскими смещениями, соответствующими в среднем
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Курс общей астрономии"
Книги похожие на "Курс общей астрономии" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о " П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии"
Отзывы читателей о книге "Курс общей астрономии", комментарии и мнения людей о произведении.