Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Тот факт, что люди сохраняют информацию гораздо более сложным способом, был известен психологам уже давно, но специалисты по ИИ открыли его для себя сравнительно недавно. Теперь они стоят перед проблемой «блочных» знаний и разницы между декларативным и процедурным знаниями (эта разница связана, как мы видели в главе XI, с тем, какие знания доступны для интроспекции).
В самом деле, наивному предположению о том, что все знание должно быть закодировано в виде пассивных фрагментов данных, противоречит основной факт конструкции компьютеров: их умение складывать, вычитать, умножать и так далее не является закодированным в пакеты данных и записанным в памяти; это знание находится не в памяти, а в самих схемах аппаратуры. Карманный калькулятор не хранит в памяти умения складывать; это знание закодировано в его «внутренностях». В памяти нет такого места, на которое можно было бы указать, если бы кто-нибудь спросил: «Покажите мне, где в этой машине находится умение складывать?»
Тем не менее, в ИИ был проделан большой объем работы по изучению систем, в которых большинство знаний хранится в определенных местах — то есть декларативно. Само собой разумеется, что какое-то знание должно заключаться в программах — иначе у нас была бы не программа, а энциклопедия. Вопрос в том, как разделить знание между программой и данными (которые далеко не всегда легко отличить друг от друга). Надеюсь, что это было достаточно хорошо объяснено в главе XVI. Если в процессе развития системы программист интуитивно воспримет некий объект как часть данных (или как часть программы), это может иметь значительное влияние на структуру системы, поскольку, программируя, мы обычно различаем между объектами, похожими на данные, и объектами, похожими на программу.
Важно иметь в виду, что в принципе любой способ кодирования информации в схему данных или процедур так же хорош, как и все остальные, в том смысле, что все то, что можно сделать, работая с одной схемой, можно сделать и с другой — если вас не слишком волнует эффективность. Однако можно привести доводы, доказывающие, что один метод определенно лучше другого. Взгляните, например, на следующий аргумент в пользу исключительно процедурного представления: «Когда вы пытаетесь закодировать достаточно сложную информацию в виде данных, вам приходится развивать для этого нечто вроде нового языка или формализма. Таким образом, на самом деле, структура ваших данных начинает напоминать программу, части которой работают как интерпретатор. Не лучше ли сразу представить ту же информацию в процедурной форме и избежать лишнего уровня интерпретации?»
ДНК и белки дают некоторую перспективуЭтот довод звучит весьма убедительно; тем не менее, если интерпретировать его немного свободнее, он может быть понят как аргумент против ДНК и РНК. Зачем кодировать генетическую информацию в ДНК, если, сохраняя ее прямо в белках, можно избежать не одного, а двух лишних уровней интерпретации? Оказывается, что иметь одну и ту же информацию, закодированную в нескольких разных формах для разных целей, очень полезно. Одно из преимуществ кодирования генетической информации в ДНК в модулярной форме (в форме данных) заключается в том, что таким образом два индивидуальных гена могут быть скомбинированы для формирования нового генотипа. Это было бы очень трудно, если бы информация содержалась только в белках. Вторым доводом в пользу хранения информации в ДНК является то, что это облегчает транскрипцию и трансляцию ее в белки. Когда информация не нужна, она не занимает много места; когда она нужна, она извлекается и служит эталоном. Не существует механизма для копирования одного белка на основе другого — их третичная укладка сделала бы такое копирование слишком громоздким. Кроме того, генетическая информация почти неизбежно должна быть представлена в трехмерных структурах, таких, как энзимы, поскольку узнавание молекул и манипуляция ими по природе являются трехмерными операциями. Поэтому в контексте клеток довод в пользу исключительно процедурного представления информации кажется неверным. Это говорит о том, что в возможности перехода от процедурной к декларативной информации и обратно есть свои преимущества. Это, возможно, верно и для ИИ.
Этот вопрос был затронут Фрэнсисом Криком на конференции по общению с внеземными культурами:
Мы видим, что на земле есть две молекулы, одна из которых хороша для копирования (ДНК), а другая — для действия (белки). Возможно ли разработать такую систему, в которой одна и та же молекула выполняла бы обе функции? Или же существуют веские, основанные на анализе системы аргументы, доказывающие, что деление этой работы на две части дает значительное преимущество? Ответа на этот вопрос я не знаю.[73]
Модульность знанияДругой вопрос, возникающий по поводу представления знания, это модульность. Насколько легко ввести новое знание? Насколько легко получить доступ к старому знанию? Насколько модулярны книги? Все это зависит от многих факторов. Если из книги, в которой главы тесно связаны между собой и ссылаются друг на друга, убрать одну главу, то эту книгу станет практически невозможно понять. Так, потянув за одну паутинку, вы разрушаете всю паутину. С другой стороны, книги, главы которых менее зависимы друг от друга, гораздно более модулярны.
Рассмотрим прямолинейную программу, производящую теоремы на основе аксиом и правил вывода ТТЧ. У «знаний» подобной программы — два аспекта. Они находятся косвенно в аксиомах и правилах и явно — в произведенных теоремах. В зависимости от того, под каким углом вы смотрите на знания, вы скажете, что они либо модулярны, либо распространены по всей программе и совершенно не модулярны. Представьте себе, например, что вы написали такую программу, но забыли включить в нее Аксиому I из списка аксиом. После того, как программа вывела тысячи теорем, вы обнаруживаете свою ошибку и вставляете новую аксиому. Тот факт, что вам это легко удается, показывает, что неявные знания системы модулярны; однако вклад новой аксиомы в явные знания системы станет заметен не скоро — после того, как произведенный ею эффект распространится по системе, подобно тому, как по комнате, в которой разбили флакон с духами, медленно распространяется аромат. В этом смысле, новое знание включается в систему постепенно. Более того, если бы вы захотели вернуться назад и заменить Аксиому I на ее отрицание, для этого вам пришлось бы убрать все теоремы, в деривации которых участвовала Аксиома I. Ясно, что явные знания системы далеко не так модулярны, как ее неявные знания.
Было бы полезно научиться делать пересадку знания в модулярной форме. Тогда, чтобы обучить человека французскому языку, нужно было бы лишь, проникнув в его мозг, определенным образом изменить его нейронную структуру, — и человек бегло заговорил бы по-французски! Разумеется, все это только юмористические мечтания.
Другой аспект представления знаний зависит от того, как мы хотим эти знания использовать. Должны ли мы, получив новую информацию, сразу делать выводы? Должны ли мы постоянно делать сравнения и проводить аналогии между новой и старой информацией? В шахматной программе, например, если вы хотите получить дерево анализа вариантов, то построение, включающее позиции на доске и минимум ненужных повторений, будет предпочтительнее, чем построение, повторяющее одну и ту же информацию в различной форме. Но если вы хотите, чтобы ваша программа «понимала» позицию, глядя на структуры на доске и сравнивая их с уже известными ей структурами, тогда повторение одной и той информации в разных формах будет более полезным.
Представление знания с помощью логического формализмаСуществует несколько философских школ, по-разному трактующих лучшие способы представления знания и работы с ним. Одна из наиболее влиятельных школ пропагандирует представление знаний с помощью формальной нотации, подобной нотации ТТЧ, — с использованием препозиционных связок и кванторов. Не удивительно, что основные операции в подобной системе выглядят как формализация дедуктивных рассуждений. Логические заключения могут быть сделаны при помощи правил вывода, аналогичных соответствующим правилам ТТЧ. Спрашивая такую систему о какой-либо идее, мы ставим перед ней цель в виде строчки, которую необходимо вывести. Например: «Является ли МУМОН теоремой?» Тут вступают в действие автоматические рассуждающие механизмы, которые пытаются приблизиться к цели, используя различные методы упрощения задач.
Предположим, например, что дано высказывание «все формальные арифметические системы неполны»; вы спрашиваете программу: «Полны ли „Principia Mathematical“». Сканируя имеющуюся в ее распоряжении информацию (часто называемую базой данных), программа может заметить, что если бы ей удалось установить, что «Principia Mathematica» — это формальная арифметика, то она могла бы ответить на вопрос. Таким образом, высказывание «„Principia Mathematica“ — это формальная арифметика» становится подзадачей, после чего в действие вступает метод упрощения задач. Если программа сможет найти что-либо еще, что могло бы способствовать подтверждению (или опровержению) задачи или подзадачи, она начнет работать над этой информацией — и так далее, рекурсивным образом. Этот процесс называется обратным сцеплением данных, поскольку он начинается с цели и затем отступает назад — предположительно к уже известным вещам. Если представить графически основную задачу, подзадачи, подподзадачи и так далее, у нас получится структура дерева, поскольку основная задача может включать несколько подзадач, каждая из которых, в свою очередь, может подразделяться на несколько подподзадач… и т. д.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.