» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






При этом часть того, что раньше было неприкасаемым, стало возможно модифицировать. Но в системе все еще осталось множество неизменных вещей. Так же как и раньше, между вами и вашим противником существуют некие соглашения, при помощи которых вы интерпретируете доску как определенный набор правил, соглашение играть по очереди и другие негласные условия. Заметьте, что теперь понятие различных уровней изменилось довольно неожиданным образом. У нас есть Неизменный уровень — давайте назовем его уровень Н — на котором находятся соглашения, касающиеся интерпретации, и Запутанный уровень — уровень З — на котором находится Запутанная Иерархия. Эти два уровня все еще иерархичны: уровень Н управляет тем, что происходит на уровне З, в то время как уровень З не затрагивает и не может затронуть уровня Н. Несмотря на то, что сам уровень З представляет из себя Запутанную Иерархию, он все же подчиняется набору правил, находящихся за его пределами. Это очень важный момент.

Как вы, несомненно, уже предположили, ничто не мешает нам сделать «невозможное» — а именно, соединить уровень Н с уровнем 3. Для этого надо только поставить сами условия интерпретации в зависимость от положения на шахматной доске. Однако для того, чтобы провести подобное «сверх-соединение», вам и вашему противнику придется выработать некие новые соглашения, соотносящие два уровня — и это создаст новый неизменный уровень сверху «сверхсмешанного» (или под ним, если вам так больше нравится). И это может продолжаться до бесконечности. «Скачки», которые при этом совершаются, напоминают те, что были описаны в Диалоге «Праздничная Кантатата» и в повторной Гёделизации, примененной к разнообразным улучшенным вариантам ТТЧ. Каждый раз, когда вам кажется, что вы подошли к концу, возникает новый вариант выхода из системы; чтобы его заметить, нужно некоторое творческое воображение.

Снова авторский треугольник

Я не собираюсь здесь прослеживать эту странную тему усложняющихся комбинаций систем, которые могут возникнуть в само-изменяющихся шахматах. Моей целью было показать читателю графически, что в каждой системе есть некий «защищенный» уровень, на который не действуют правила других уровней, какими бы запутанными не были их взаимодействия между собой. Забавная загадка из главы IV иллюстрирует эту мысль в немного ином контексте. Может быть, она застанет вас врасплох:


Рис. 134. «Авторский треугольник».

Перед нами три автора: З, Ч и Э. З существует только в романе, написанном Ч. Аналогично, Ч — только герой романа, написанного Э. Что удивительно, Э — тоже не более как персонаж романа — чей автор, естественно, З. Может ли существовать такой авторский треугольник?

Разумеется, может! Но для этого все трое должны быть персонажами четвертого романа, написанного X. Можно сказать, что З-Ч-Э представляет из себя Странную Петлю или Запутанную Иерархию, а автор X находится в неизменном пространстве, вне той системы, в которой происходит эта путаница. Хотя З, Ч и Э имеют прямой или косвенный доступ друг к другу и могут напакостить один другому в своих романах, ни один из них не может затронуть жизнь X. Они даже не могут вообразить его, так же, как вы не в состоянии представить себе автора того романа, который выдумал в качестве своего героя вас. Если бы я хотел ввести в схему автора X, я нарисовал бы его вне страницы. Разумеется, это было бы проблематично, поскольку изображение предмета с необходимостью помещает его на странице… Так или иначе, X в действительности находится вне мира, в котором обитают З, Ч и Э, и должен быть представлен соответствующим образом.


Рис. 135. М. К. Эшер. Рисующие руки, (литография, 1948).


Эшеровы «Рисующие руки»

Другая классическая вариация на эту тему — картина Эшера «Рисующие руки» (Рис. 135). Здесь левая рука (ЛР) рисует правую руку (ПР), в то время как ПР рисует ЛР. Снова уровни, обычно понимаемые как иерархические — рисующее и рисуемое — замыкаются друг на друга, создавая Запутанную Иерархию. Этот пример, разумеется, подтверждает идею данной главы, поскольку за ним стоит ненарисованная, но рисующая рука самого Эшера — создателя как ЛР, так и ПР. Эшер стоит вне пространства этих рук, и это хорошо видно на рис. 136. В верхней части этого схематического варианта картины Эшера вы видите Странную Петлю или Запутанную Иерархию, а в нижней — Неизменный уровень, позволяющий ее существование. Мы могли бы еще раз «Эшеризировать» картину Эшера. сфотографировав рисующую ее руку… и так далее.


Рис. 136. Абстрактная диаграмма, представляющая картину Эшера «Рисующие руки». Внизу приведено ее решение.


Мозг и разум: переплетение нейронов, лежащее в основе переплетения символов

Теперь мы можем соотнести эту картину с мозгом, а также с программами ИИ. Когда мы думаем, символы в нашем мозгу активируют другие символы, и все они взаимодействуют гетерархически. Более того, символы могут заставить друг друга измениться внутренне и стать чем-то вроде программ, действующих на другие программы. Благодаря Запутанной Иерархии символов, у нас создается иллюзия, что неизменяемого уровня в мозгу не существует. Мы думаем, что подобного уровня нет, потому что он для нас невидим.

Если бы было возможно изобразить это схематически, получился бы гигантский лес символов, соединенных друг с другом перепутанными линиями, вроде лиан в джунглях. Это — высший уровень, где рождаются и развиваются мысли, тот ускользающий уровень разума, который аналогичен рисующим друг друга рукам. Внизу на схеме помещалось бы изображение мириад нейронов — «неизменного субстрата,» лежащего в основе переплетения символов и аналогичного «движущей силе» — Эшеру. Интересно, что в буквальном смысле сам этот нижний уровень тоже представляет из себя переплетение: миллиарды клеток и сотни миллиардов аксонов, соединяющих клетки между собой.

В этом интересном случае сложное переплетение на уровне программ основано на переплетении на уровне самой аппаратуры — нейронов. Но Запутанной Иерархией можно назвать лишь переплетение символов. Переплетение нейронов — это «простое» переплетение. Это различие подобно разнице между Странными Петлями и обратной связью, которое я описал в главе XVI. Запутанная Иерархия получается тогда, когда строго иерархичные на первый взгляд уровни внезапно начинают действовать друг на друга в нарушение всех правил иерархии. Элемент неожиданности здесь очень важен; именно поэтому я называю Странные Петли «странными». Простое переплетение, такое, как обратная связь, не нарушает установленных различий между уровнями. Например, когда вы стоите под душем и моете правую руку левой рукой и наоборот, это в порядке вещей. Эшер не случайно решил нарисовать руки, рисующие руки!

События, подобные моющим друг друга рукам, случаются в мире очень часто, и мы их обычно не замечаем. Я говорю что-то вам, а вы в ответ говорите что-то мне. Парадокс? Вовсе нет; наше восприятие друг друга с самого начала не включает никакой иерархии, поэтому здесь нет ничего странного.

С другой стороны, в языке получаются странные петли тогда, когда он прямо или косвенно говорит сам о себе. При этом нечто, лежащее внутри системы, выходит из нее и воздействует на систему так, словно оно находится вовне. Возможно, что нас смущает некое неопределенное чувство топологической неправильности: стирание различия между внутренним и внешним, как в знаменитой «бутыли Клейна». Хотя система абстрактна, наш мозг создает для нее пространственный образ с некоторой мысленной топологией. Вернемся к путанице символов. Если глядеть только на нее и игнорировать нейронный фундамент, то в ней можно увидеть самопрограммирующий объект — точно так же, как глядя на «Рисующие руки», мы видим саморисующую картину и на мгновение верим этой иллюзии, забывая об Эшере. В случае картины эта иллюзия рассеивается мгновенно — но в случае человеческого разума она оказывается весьма стабильной. Мы чувствуем, что мы самопрограммирующие. Более того, мы и не можем чувствовать иначе, поскольку мы защищены от низшего уровня, уровня нейронных сплетений. Нам кажется, что наши мысли живут в своем собственном пространстве, создавая новые мысли и изменяя старые; мы не замечаем помогающих этому нейронов! Но так и должно быть. Мы просто не можем их заметить.

Аналогичная двусмысленность может произойти с программами ЛИСПа, которые умеют действовать на самих себя, изменяя собственную структуру. Посмотрев на них на уровне ЛИСПА, вы можете сказать, что они меняют сами себя; но, сменив уровни и представив программы ЛИСПА как данные для интерпретатора ЛИСПа (см. главу X), вы увидите, что единственная работающая программа здесь — интерпретатор и что все изменения — не более как изменения неких данных. Сам интерпретатор ЛИСПа защищен от изменений.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.