» » » » Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд


Авторские права

Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

Здесь можно скачать бесплатно "Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Мир, год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд
Рейтинг:
Название:
Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд
Издательство:
Мир
Год:
1990
ISBN:
5-03-001195-1 (русск) 3-492-10343-X (нем)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Описание и краткое содержание "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" читать бесплатно онлайн.



Книга астронома из ФРГ посвящена изложению современных взглядов на свойства, строение, происхождение и эволюцию звезд. Не применяя математики и сложной терминологии, автор просто и наглядно объясняет все основные результаты теории звезд, начиная с ее классических разделов и кончая самыми современными данными о пульсарах, рентгеновских звездах и черных дырах.






Особенно важны измерения лучевой скорости для тесных двойных систем. Звезда, обращающаяся вокруг другой звезды, в течение одного оборота движется сначала по направлению к нам, а затем от нас, если только мы смотрим не строго перпендикулярно к плоскости ее орбиты. Это периодическое изменение скорости может быть измерено с помощью спектров и затем использовано для определения масс звезд, как описано в приложении В. О многих звездах мы знаем, что они двойные, а не одиночные, именно благодаря доплеровскому сдвигу линий в их спектрах. Они находятся так далеко от нас в пространстве и расположены так близко одна к другой, что с помощью телескопа различить звездную пару невозможно. Но даже если они при обращении не затмевают друг друга, мы можем установить по периодическому смещению линий в их спектрах, что здесь две звезды обращаются одна вокруг другой.

Приложение Б

Как измеряют Вселенную

Мы мало что могли бы сказать о звездах, если бы не знали, на каком расстоянии от нас они находятся. Неприметная светящаяся точка в небе может быть «звездой», которая имеет меньше метра в диаметре, находится недалеко от Земли и не излучает своего света, а лишь отражает солнечный. Но она может быть и небесным телом, которое излучает столько же света, сколько целая галактика, но находится так далеко от нас во Вселенной, что расстояние не дает нам почувствовать всю силу его сияния. Очень трудно от прямых измерений расстояний на Земле перейти к измерению расстояний во Вселенной.

Сегодня, в век электроники, измерения в нашей Солнечной системе не составляют проблем. На Венеру направляют радиолокатор, а потом используют закон, открытый Иоганном Кеплером еще к началу Тридцатилетней войны — так называемый третий закон Кеплера. Он устанавливает связь между периодом обращения планет вокруг Солнца и радиусами их орбит. Согласно закону Кеплера, для двух планет А и В (например, Венеры и Земли), справедливо соотношение

(период обращения А)2 х (радиус орбиты В)3 = (период обращения В)2 х (радиус орбиты А)3.

Периоды обращения планет могут быть непосредственно измерены (для Земли 365,26 суток, для Венеры 224,70 суток), так что вышеприведенное соотношение устанавливает связь между радиусами двух орбит.

Отраженный от Венеры сигнал радиолокатора принимается на Земле, и по времени, прошедшему от момента посылки до приема сигнала, движущегося со скоростью света, определяют расстояние от Земли до Венеры, т. е. разность радиусов их орбит. Теперь у нас есть два уравнения для двух неизвестных (радиусов орбит Земли и Венеры) которые легко решить.

Следующий шаг-это переход от нашей Солнечной системы к звездам. Для этого астрономы пользуются методом параллаксов, который, как указывалось в гл. 4, был предложен еще Галилео Галилеем, но впервые успешно применен только в 1838 г. Фридрихом Вильгельмом Бесселем для определения расстояния до звезды 61 Лебедя Вследствие годичного обращения Земли вокруг Солнца направление, в котором мы видим ту или иную ближнюю звезду на небе, в течение года меняется. Это схематически представлено на рис. Б.1. Длину линии, связывающей положения Земли 1 января и 1 июля, мы знаем: это удвоенный радиус орбиты Земли. Углы между плоскостью орбиты и направлением на звезду можно измерить, наблюдая звезду в указанные два дня. Таким образом, в показанном на рисунке треугольнике нам известны сторона и два угла; зная три элемента треугольника, можно вычислить все остальные — этому мы научились еще в школе. Можно, стало быть, вычислить расстояния от Земли до звезды 1 января и 1 июля. Во всех практических случаях звезда находится так далеко, что небольшим различием между этими расстояниями пренебрегают.

Рис. Б. 1. Метод параллаксов. Расстояние АВ равно удвоенному расстоянию от Земли до Солнца, определенному методом радиолокации Венеры. Углы при А и В можно измерить 1 января и 1 июля-таким образом становятся известны три элемента треугольника ABC- определение искомых двух сторон представляет собой несложную школьную задачу.

Так можно узнать расстояние до звезды от нашей Солнечной системы. Описанный метод позволяет измерять расстояния до 300 световых лет. В частности, расстояния до всех звезд, показанных на диаграмме Г-Р на рис. 2.2 для звезд, ближайших к Солнцу, определены методом параллаксов. Для звезд, которые находятся от нас дальше во Вселенной, различия между направлениями, в которых эти звезды видны через полугодичный интервал, столь малы, что измерить их не удается. Здесь этот метод уже не работает.

Другой важный метод определения расстояний я могу описать лишь приблизительно. Он основан на том, что звезды, принадлежащие к одному скоплению, движутся все в одном направлении с одинаковыми скоростями по параллельным траекториям. Хотя их движение наблюдается как крошечное, неизмеримо малое смещение на небе, для многих скоплений удается заметить, что их параллельные траектории сходятся в одной точке, подобно тому как сходятся рельсы железной дороги в одной точке на горизонте. Эта точка говорит нам о том, в каком направлении движется та или иная группа звезд. Измерив лучевую скорость движения звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды год от года смещаются относительно очень удаленных (неподвижных) звезд, можно определить расстояние до интересующего нас скопления. Задача снова сводится к решению треугольников, но здесь мы не будем вдаваться в подробности. Так было измерено расстояние до многих звездных скоплений, что позволило определить светимость звезд и их положение на диаграмме Г-Р, как рассказывалось в гл. 2.

Можно поступить и наоборот. Если звезды находятся так далеко, что ни один из описанных методов не дает результатов, то пользуются тем фактом, что менее массивные звезды лежат на главной последовательности, и, как положено, светимость каждой соответствует ее цвету. И если я смогу определить цвет звезды главной последовательности какого-либо скопления, то тут же буду знать и ее светимость. Сравнивая светимость звезды с ее блеском (яркостью, которую имеет звезда на небе), я после несложных вычислений определю расстояние до нее, а следовательно, и до звездного скопления.

То, что удалось проникнуть в космос на еще большие расстояния, почти фантастично. По причинам, которые долгое время оставались непонятными, пульсирующие звезды-цефеиды, о которых говорилось в гл. 6, обладают замечательным свойством. Между их периодом и светимостью существует однозначная связь (рис. Б.2). Период изменения блеска цефеид легко установить с помощью регулярных наблюдений, и тогда нетрудно, зная показанную на рис. Б.2 закономерность, определить их светимость, среднюю за период. А сравнивая светимость с блеском звезды, легко вычислить расстояние до нее. Цефеиды обладают очень высокой светимостью, поэтому их можно наблюдать не только в самых отдаленных уголках нашего Млечного Пути, но и среди звезд других галактик. Благодаря этому удалось определить расстояние от нашей собственной Галактики, до галактик, лежащих дальше от нас, чем Туманность Андромеды.

Рис. Б.2. Диаграмма период — светимость переменных звезд типа цефеид. У этих звезд определенному значению периода соответствует вполне определенная светимость. Поскольку период определить легко, нетрудно, зная период, вычислить и светимость звезды, усредненную за период. Зная светимость звезды и ее видимую величину (блеск), можно определить расстояние до звезды.

Приложение В

Как взвешивают звезды

Несмотря на то что современная техника подарила астрономам точнейшие измерительные устройства и позволила им применять в своих расчетах компьютеры, при определении звездных масс астрономы не продвинулись далеко от методов, восходящих еще к Иоганну Кеплеру и Исааку Ньютону, методов, которым уже триста лет. Начнем с массы Солнца. В поле силы тяжести Солнца Земля движется почти по круговой орбите. При этом она испытывает действие центробежной силы, стремящейся отбросить ее в пространство. Центробежная сила действует против притяжения Земли Солнцем — силы, которая стремится обрушить нашу планету в центр огненного солнечного шара. Земля движется точно по такой траектории, на которой эти противодействующие силы находятся в равновесии. Условие равновесия этих сил дает возможность определить силу, с которой Земля притягивается Солнцем, а, следовательно, и массу последнего по формуле

(радиус орбиты планеты)3 = (гравитационная постоянная) х (масса планеты + масса Солнца) х (период обращения планеты)2.

Значение гравитационной постоянной известно из физики. Радиус орбиты Земли определяется методом, описанным в приложении Б. Период обращения Земли вокруг Солнца равен одному году. Таким образом, наше уравнение содержит только одно неизвестное, сумму масс Земли и Солнца, и его нетрудно решить. Так как масса Земли ничтожна по сравнению с массой Солнца, эта сумма практически равна массе Солнца.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Книги похожие на "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рудольф Киппенхан

Рудольф Киппенхан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Отзывы читателей о книге "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.