» » » » Иосиф Розенталь - Геометрия, динамика, вселенная


Авторские права

Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь можно скачать бесплатно "Иосиф Розенталь - Геометрия, динамика, вселенная" в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Геометрия, динамика, вселенная
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Геометрия, динамика, вселенная"

Описание и краткое содержание "Геометрия, динамика, вселенная" читать бесплатно онлайн.



Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.






Итак, значение размерности N, по-видимому, самая значительная характеристика физического пространства. Но тогда остается вопрос: почему наблюдаемая размерность Метагалактики N=3?

На наш взгляд, попытка искать ответ на этот вопрос, оставаясь лишь в пределах математики, обречена на неудачу. Ответ может содержаться, как нам представляется, в одной важной, но малоразработанной области физики, связанной с численными значениями фундаментальных постоянных. С первого взгляда кажется, что обращение к этой области — уход в сторону. Однако хорошо известно, что в физике прямолинейность отнюдь не является синонимом краткости.

Итак, будем искать природу размерности нашей Метагалактики в физической (динамической) выделенности размерности N = 3. Разумеется, в подобном подходе мы будем полагать неизменным другое его свойство — евклидовость, которое кажется вполне естественным вследствие его простоты. 8 дальнейшем будем опираться на полузабытую работу П.Эренфеста «Как проявляется трехмерность пространства в фундаментальных законах физики», значение которой можно оценить лишь в настоящее время. Сейчас рассуждения Эренфеста кажутся настолько простыми, что мы ограничимся лишь качественными соображениями`. В этой работе содержатся две взаимосвязанные кардинальные идеи, развитие которых и будет положено в основу нашего анализа природы пространства и физических закономерностей на современном уровне.[19]

Первая идея заключается в доказательстве отсутствия некоторых основных устойчивых связанных состояний при изменении численного значения фундаментальных постоянных.

Вторая — в утверждении: чтобы понять, почему мир устроен так, а не иначе, необходимо варьировать, изменять фундаментальные постоянные.

Заметим, что в работе Эренфеста эти утверждения не содержатся в таком явном виде, однако использованный им метод неявно опирается на обе идеи.

Подчеркнем исключительную нетривиальность этих идей не только для времени написания этой работы (1917 г.), но даже и для современной эпохи. Физики привыкли к тому, что фундаментальные постоянные в лабораторной физике имеют фиксированные значения, которые в многочисленных таблицах представлены с колоссальной точностью. Поэтому даже мысленные манипуляции с фундаментальными постоянными, к которым в первую очередь следует отнести размерность N, вызывают, как правило, в лучшем случае сомнение, а в худшем — отрицание. Однако автор надеется, что последующая часть его книги поможет убедиться в правомерности подхода Эренфеста.

Перейдем далее к изложению его идей.

Рассмотрим устойчивость системы, связанной в N-мерном евклидовом пространстве дальнодействующими силами и состоящей из двух тел. Для простоты буем полагать, что одно тело неподвижно, а движется лишь второе. Это означает, что константы взаимодействия первого тела (например, масса) существенно превышают константы взаимодействия второго и первое тело можно полагать неподвижным. В таком случае полная потенциальная энергия U| системы в N-мерном

N пространстве определяется выражением

— C M**2 U| = —---- + —------. (64) N r**(N-2) 2 * m * r**2

В этом соотношении C — константа взаимодействия, r расстояние между двумя телами, член C/r**(N-2) потенциальная энергия, соответствующая статическому взаимодействию. Этот член — обобщение законов Кулона и Ньютона для евклидового пространства с произвольной целочисленной размерностью (см. связь этих законов с евклидовой геометрией в разд.3 гл.2), M — момент количества движения, m — масса движущегося тела, член M**2 / 2mr**2 центробежная энергия системы.

Из теории устойчивости следует, что система может находиться в устойчивом состоянии, если энергия U| имеет

N минимум при r ≠ 0 или r ≠ ∞.

Мы приведем окончательные результаты исследования выражения (64) на экстремум при различных значениях N. Оказывается, что:

при N > 4 минимум существует лишь при r=0, это соответствует падению легкого тела на тяжелое;

при N = 4 минимум отсутствует;

при N = 2, 3 возможны минимумы при конечном значении r;

при N = 1 система абсолютно устойчива, т. е. всегда связана (эта особенность отражает отмеченный ранее факт (см. разд.10 гл.2), что невылетание кварков эффективно определяется одномерной геометрией).

Таким образом, устойчивые связанные состояния, определяемые дальнодействующими силами, могут существовать лишь в пространствах с размерностью N ≤ 3.

Эренфест доказал это положение в рамках классической динамики и боровской модели атома. В дальнейшем (Ф.Тангерлини, Л.Э.Гуревич, В.М.Мостепаненко) аналогичное доказательство было проведено в рамках квантовой механики.

Таким образом, в многомерных евклидовых пространствах (N ≥ 4) не могут существовать аналоги атомов или планет.

Далее мы приведем аргументы, поясняющие причины того, что пространство Метагалактики имеет размерность N ≠ 1, 2. Здесь же мы подчеркнем важный вывод из анализа Эренфеста. В многомерных евклидовых пространствах невозможно существование устойчивых связанных состояний, обусловленных дальнодействующими силами. Необходимо отметить, что доказанный факт, изолированный от физической науки как целого, может рассматриваться скорее как курьез. Единичный факт, происхождение которого непонятно и может быть отнесено к компетенции счастливого случая, едва ли может служить убедительной основой для понимания столько глубокой характеристики, как размерность N. Вероятно, поэтому работа Эренфеста была прочно забыта, и о ней вспомнили совсем недавно в связи с развитием космологии и физики элементарных частиц, развитием, воплощенным в принцип целесообразности и антропный принцип, о которых речь пойдет далее. В рамках прогресса физики и космологии последних десятилетий можно оценить по достоинству идеи Эренфеста. Далее мы остановимся на принципе целесообразности, который является развитием основных идей Эренфеста.

Принцип целесообразности — это констатация факта, что существование основных устойчивых состояний обусловлено всей совокупностью физических закономерностей, включая размерность пространства и другие численные значения фундаментальных постоянных. Для существования основных устойчивых состояний физические закономерности не только достаточны, но и необходимы. Наш мир устроен очень хрупко, небольшое изменение его законов разрушает его элементы основные связанные устойчивые состояния, к которым можно отнести ядра атомов, атомы, звезды и галактики.

Здесь, разумеется, возникает вопрос: что означает слово «небольшое»? С первого взгляда может показаться, что в физике нет количественного критерия «величины» изменения закономерностей. Однако такая точка зрения совершенно неправильна. Оказывается, что в действительности такие критерии существуют и опираются на экспериментально хорошо изученные явления. В этой книге мы ограничимся немногими иллюстрациями`. На наш взгляд, наиболее впечатляющим примером является неустойчивость структуры Метагалактики относительно значения массы m| электрона. Действительно, при

e температурах T < 10**10 K атом водорода в Метагалактике абсолютно стабильный элемент. Эта стабильность обеспечивается самым суровым ограничением — законом сохранения энергии, запрещающим реакцию

p+e| — > n+v (65)

(p, n, e|, v — соответственно протон, нейтрон, электрон и нейтрино). Однако, используя значения превосходно измеренных масс частиц, участвующих в реакции (65), легко убедиться, что при увеличении массы m| более чем в 2.5 раза реакция (65) осуществлялась бы при сколь угодно малых температурах. А это означало бы, что при увеличении массы m| атом водорода коллапсировал бы в нейтрон и нейтрино.[20]

Нетрудно очертить сценарий эволюции метагалактик, в которой электрон был бы тяжелей «нашего» в 2.5 раза, а все остальные законы (в том числе и константы) имели бы прежнюю форму.

В процессе эволюции Метагалактика при t| ≈ 10**6 лет

u существует эра нейтрального водорода, когда формируются галактики, поэтому эта эра играет исключительно важную роль. Однако в метагалактике с утяжеленным электроном почти все вещество в соответствии с реакцией (65) превратилось бы в нейтроны и нейтрино. Это означает, что в таком мире существовали бы исключительно нейтронные звезды и бесмассовые нейтральные частицы. Мир кардинально изменил бы свой лик. Этот факт мы и называем неустойчивостью структуры Метагалактики (в данном случае относительно значения массы m|).

Далее следует задаться вопросом: велико или мало изменение значения массы m| в 2.5 раза? В физике подобная абстрактная постановка вопроса бессодержательна. Физический смысл имеют лишь относительные величины: велико или мало относительно некоторого эталона. Для значения массы m| мы обладаем таким эталоном. На ускорителях надежно измерено распределение примерно 300 элементарных частиц по их массам.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Геометрия, динамика, вселенная"

Книги похожие на "Геометрия, динамика, вселенная" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Иосиф Розенталь

Иосиф Розенталь - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Иосиф Розенталь - Геометрия, динамика, вселенная"

Отзывы читателей о книге "Геометрия, динамика, вселенная", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.