» » » » Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей


Авторские права

Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

Здесь можно купить и скачать "Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей" в формате fb2, epub, txt, doc, pdf. Жанр: Программы, издательство ДМК Пресс, Питер, год 2008. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
Рейтинг:
Название:
OrCAD PSpice. Анализ электрических цепей
Автор:
Издательство:
неизвестно
Жанр:
Год:
2008
ISBN:
978-5-9706-0009-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "OrCAD PSpice. Анализ электрических цепей"

Описание и краткое содержание "OrCAD PSpice. Анализ электрических цепей" читать бесплатно онлайн.



Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.

На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.






FREQ      I(RC)     IP(RC)    I(C3)     IP(C3)

6.000E+01 9.257E+01 2.665E+01 2.152E+01 1.791E+02

FREQ      I(R1)      IP(R1)

6.000E+01 4.749E+01 -1.470E+02

FREQ      I(R2)      IP(R2)

6.000E+01 4.749E+01 -2.704E+01

FREQ      I(R3)     IP(R3)

б.000E+01 4.749E+01 9.296E+01

FREQ      V(1A,2B)   VP(1A,2B)

6.000E+01 3.806E+02 -1.509E+02

FREQ      V(2B,0C)   VP(2B,0C)

6.000E+01 3.806E+02 -3.090E+01

FREQ      V(0С,1A)  VP(0С,1A)

6.000E+01 3.806E+02 8.910E+01

Рис. 2.40. Выходной файл с результатами анализа схемы на рис. 2.39


Мы видим, что каждый из линейных токов уменьшился после включения в схему конденсаторов с 92,64 до 75,51 А. Уменьшение тока сопровождается улучшением коэффициента мощности. Коэффициент мощности найдем по прежней методике. Напряжение фазы примем равным V(1a, 2b)=230∠2,26° В, ток фазы найдем (косвенно) из тока I(RA)=75,52∠-72,2° А. Так как это линейный ток, соответствующий ток фазы имеет величину

при фазовом угле –42,2°. Этот угол мы получили, прибавив 30° к углу линейного тока. И величина и угловые значения справедливы для симметричной нагрузки. Угол коэффициента мощности равен 2,26°+42,2°=44,46°. Коэффициент мощности:

pf = cos (-44,46°) = 0,581Р = 0,71.

При несимметричных нагрузках применяется другой подход к нахождению тока фазы, при котором складываются ток в одной фазе нагрузки и соответствующий ток в конденсаторе. Таким образом, складывая I(R1) и I(С1), мы получаем:

I(R1) + I(C1) = 53,53∠-52,19° + 13,02∠92,226° = 43,6∠-42,18° A.

в соответствии с предыдущими вычислениями. В отсутствие конденсаторов коэффициент мощности составлял 0,58.

В случае необходимости можно легко выполнить анализ на PSpice с другими значениями емкости для сравнения.

Трехфазный выпрямитель

На рис. 2.41 показан трехфазный выпрямитель, соединенный в звезду. Все фазные напряжения имеют максимальное значение 10 В при частоте 60 Гц. Схема обеспечивает режим без пауз тока в нагрузке. Входной файл:

Three-Phase Rectifier

v1 1 0 sin(0 10V 60Hz 0 0 0)

v2 2 0 sin(0 10V 60Hz 0 0 -120)

v3 3 0 sin(0 10V 60Hz 0 0 120)

DA 1 4 D1

DB 2 4 D1

DC 3 4 D1

RL 4 0 100

.MODEL D1 D

.TRAN 0.1us 33.33ms

.PROBE

.END

Рис. 2.41. Трехфазный выпрямитель


Выполните анализ, воспользовавшись программой Probe, и проверьте результаты, показанные на рис. 2.42. Затем удалите графики напряжений и получите график тока нагрузки I(RL). Убедитесь, что он изменяется между минимальным значением 43,5 мА и максимальным значением 92,3 мА.

Рис. 2.42. Форма напряжений в схеме на рис. 2.41, полученная в программе Probe


Команда .MODEL используется, чтобы описать диод. Диод один из многих приборов, поддерживаемых PSpice. Имя DI определяется нашим выбором, но буква D в начале обозначения требуется всегда и не может быть заменена другой. Команды, вводящие три одинаковых диода, устанавливают, что DA, DB и DC основаны на том же самом типе диода, который мы применяли ранее для DI. Для других примеров обратитесь к приложению В.

Регулировка напряжения в трехфазных системах

Мощная фидерная линия должна быть спроектирована так, чтобы падение напряжения между источником и нагрузкой не превышало предельного значения. Часто разрешается использовать падение напряжения для регулировки напряжения на нагрузке в пределах 5 или менее процентов. Схема на рис. 2.43 используется, чтобы иллюстрировать требования к регулированию напряжения. Мы видим, что в каждую линию включены сопротивление и индуктивность. Будет ли желательное регулирование напряжения достигнуто при R=0,077 Ом и L=0,244 мГн в линии фидера? Воспользуемся моделированием PSpice, чтобы найти напряжение на нагрузке.

Рис. 2.43. Схема для иллюстрации регулирования напряжения


Нагрузка, соединенная в звезду, представляет собой трехфазный двигатель, предназначенный для питания от сети 440 В, 60 Гц. Исходное линейное напряжение составляет 460 В, откуда фазное напряжение:

Входной файл не требует никаких дополнительных пояснений. Он показан на рис. 2.44 вместе с результатами анализа. Процент регулирования напряжения ΔV равен:

Voltage Regulation for Three-Phase Load

VA 1 0 AC 265.58V 0

VB 5 0 AC 265.58V -120

VC 9 1 AC 265.58V 120

R1 1 2 0.077

R2 5 6 0.077

R3 9 10 0.077

L1 2 3 0.244mH

L2 6 7 0.244mH

L3 10 11 0.244mH

RL1 4 0 2.7

RL2 8 0 2.7

RL3 12 0 2.7

LL1 3 4 6.12mH

LL2 7 8 6.12mH

LL3 11 12 6.12mH

.AC LIN 1 60HZ 60HZ

.PRINT AC I(R1) IP(R1) I(R2) IP(R2)

.PRINT AC I(R3) IP(R3)

.PRINT AC V(3) VP(3) V(7) VP(7)

.PRINT AC V(11) VP(11)

.OPT NOPAGE

.END

**** AC ANALYSIS TEMPERATURE = 27.000 DEG С

FREQ      I(R1)      IP(R1)    I(R2)      IP(R2)

6.000E+01 7.237E+01 -4.083E+01 7.237E+01 -1.608E+02

FREQ      I(R3)     IP(R3)

6.000E+01 7.237E+01 1.917E+01

FREQ      V(3)       VP(3)     V(7)       VP(7)

6.000E+01 2.570E+02 -3.108E-01 2.570E+02 -1.203E+02 

FREQ      V(11)     VP(11)

6.000E+01 2.570E+02 5.969E+01

Рис. 2.44. Выходной файл при моделировании схемы на рис. 2.43

Двухфазные системы

Проведем анализ двухфазной системы, скорее всего, для удовлетворения собственного любопытства, пользуясь тем, что его очень легко реализовать на PSpice. На рис. 2.45 приведена такая схема, где полные сопротивления нагрузки равны Z=(25+j50) Ом для каждой фазы.

Рис. 2.45. Двухфазная схема


Two-Phase System

V1 1 0 AC 120 0

V2 2 0 AC 120 -90

R1 1 3 0.10

R2 2 7 0.10

R3 0 5 0.10

RL1 3 4 25

RL2 7 6 25

L1 4 5 0.133H

L2 6 5 0.133H

.AC LIN 1 60HZ 60HZ

.PRINT AC V(3,5) VP(3,5)

.PRINT AC V(7,5) VP(7,5)

.PRINT AC I(RL1) IP(RL1)

.PRINT AC I(RL2) IP(RL2)

.PRINT AC I(R3) IP(R3)

.OPT NOPAGE

.END

**** AC ANALYSIS TEMPERATURE = 27.000 DEG С

FREQ      V(3,5)    VP(3,5)

6.000E+01 1.200E+02 2.284E-01

FREQ      V(7,5)     VP(7,5)

6.000E+01 1.196E+02 -8.986E+01

FREQ      I(RL1)     IP(RL1)

6.000E+01 2.142E+00 -6.327E+01

FREQ      I(RL2)     IP(RL2)

6.000E+01 2.135E+00 -1.534E+02

FREQ      I(R3)     IP(R3)

6.000E+01 3.022E+00 7.178E+01

Рис. 2.46. Выходной файл с результатами анализа схемы на рис. 2.45


При частоте 60 Гц, реактивное сопротивление 50 Ом соответствует индуктивности L=0,133 Гн. Входной файл включен в рис. 2.46, который показывает выходные напряжения и токи. Фазные напряжения на нагрузке имеют почти одинаковые значения (120 В) и сдвинуты приблизительно на 90°. Линейные токи I(RL1) и I(RL2) также имеют почти равные значения (2,15 А) и сдвинуты приблизительно на 90°. Обратите внимание на ток I(RL1), сдвинутый на угол -63,27°, который является также фазовым углом для полного сопротивления нагрузки. Ток нейтрали I(R3) более чем в два раза превышает линейные токи:

Z = R + jXL = 25 + j50 = 55,9∠63,4°Ом.

Нарисуйте векторную диаграмму, показав фазные напряжения на нагрузке и каждый из трех линейных токов.

Интересно посмотреть, что получится, если увеличить сопротивление в каждой линии. Установим для R1, R2 и R3 значения сопротивлений в 10 Ом и выполним моделирование снова. Новый выходной файл показан на рис. 2.47. Обратите внимание, что V(3,5)=111∠19,3° и V(7,5)=89,1∠-82,2°. Напряжения теперь несбалансированы и сдвинуты на 105,5°. Линейные токи также несбалансированы, и снова ток нейтрали больше, чем любой из двух других токов.

Two-Phase System with Large Values of Line Resistance

V1 1 0 AC 120 0

V2 2 0 AC 120 -90

R1 1 3 10

R2 2 7 10

R3 0 5 10

RL1 3 4 25

RL2 7 6 25

L1 4 5 0.133H

L2 6 5 0.133H

.AC LIN 1 60HZ 60HZ

.PRINT AC V(3,5) VP(3,5)

.PRINT AC V(7,5) VP(7,5)

.PRINT AC I(RL1) IP(RL1)

.PRINT AC I(RL2) IP(RL2)

.PRINT AC I(R3) IP(R3)

.OPT NOPAGE

.END

**** AC ANALYSIS TEMPERATURE = 27.000 DEG С

FREQ      V(3,5)    VP(3,5)

6.000E+01 1.110E+02 1.926E+01

FREQ      V(7,5)     VP(7,5)

6.000E+01 8.909E+01 -8.220E+01

FREQ      I(RL1)     IP(RL1)

6.000E+01 1.981E+00 -4.424E+01

FREQ      I(RL2)     IP(RL2)

6.000E+01 1.590E+00 -1.457E+02

FREQ      I(R3)     IP(R3)

6.000E+01 2.280E+00 9.265E+01

Рис. 2.47. Выходной файл с результатами анализа схемы на рис. 2.45 при увеличенных сопротивлениях

Обзор новых команд PSpice, применяемых в данной главе


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "OrCAD PSpice. Анализ электрических цепей"

Книги похожие на "OrCAD PSpice. Анализ электрических цепей" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дж. Кеоун

Дж. Кеоун - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей"

Отзывы читателей о книге "OrCAD PSpice. Анализ электрических цепей", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.