Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Баллистическая теория Ритца и картина мироздания"
Описание и краткое содержание "Баллистическая теория Ритца и картина мироздания" читать бесплатно онлайн.
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Рассмотрим теперь реакции синтеза. В них тоже нет сверхъестественной пропажи массы и рождения из неё энергии. К таким реакциям отнесём и аннигиляцию электрона с позитроном. Те, как выяснили выше, не исчезают, а образуют частицу массы 2me. Выделяемая в виде γ-излучения энергия — это энергия электрического поля (работа кулоновской силы притяжения), освобождённая при сближения частиц (§ 1.16). Другой пример — слияние ядер дейтерия и трития, с образованием ядра гелия и нейтрона (Рис. 129). И тут энергия выделяется так же, как в реакциях химического синтеза. Скажем, при взрыве гремучего газа (смеси водорода и кислорода) атомы H и O сливаются воедино, образуя молекулу воды, с выделением внутренней энергии в виде взрыва. Аналогично и в реакции синтеза гелия в водородной бомбе выходит скрытая внутренняя энергия электрического слияния ядер водорода. При этом, реагентам необходимо прежде сообщить начальную, запальную энергию. В химии эта энергия называется "энергией активации". Такая же энергия активации есть и в реакциях ядерного синтеза: чтобы ядра водорода слились, и в игру вступили ядерные силы, ядра должны сойтись, преодолев кулоновское отталкивание. Для этого в ядерных снарядах водородное горючее "поджигается" запальным распадом плутония или урана. Подобный запал (детонатор с гремучей ртутью) есть и в обычных снарядах с химической взрывчаткой.
Рис. 129. Слияние ядер дейтерия и трития в ядро гелия. Слиянию противостоят кулоновские силы отталкивания ядер.
Таким образом, аналогия химических и ядерных реакций — полная. Однако, если в реакциях распада энергия выделяется в виде кинетической энергии разлетающихся осколков ядра (разогнанных полем кулоновского отталкивания), а в реакциях аннигиляции — в виде энергии γ-излучения (преобразованной энергии электрического притяжения e- и e+), то откуда же берётся энергия в реакциях синтеза? Ведь ядра заряжены положительно и отталкиваются: их сближение требует затрат энергии. Не зря, реакции синтеза идут не спонтанно, а — лишь при нагреве до высоких температур, дабы ядра, обладая достаточной кинетической энергией, могли сойтись. Лишь на расстояниях, порядка 10-15 м, в игру вступают ядерные, притягивающие силы, превышающие силы кулоновского отталкивания. Эти быстро спадающие с удалением силы — тоже электрической природы (§ 3.12). Поэтому, выделяемая при сближении в поле этих сил энергия — это тоже энергия электрического поля, а, в конечном счёте, кинетическая энергия реонов, — частиц-переносчиков электрического воздействия (§ 1.14).
Видим, что механизм выделения энергии в ядерных реакциях не имеет отношения к СТО и потере массы. Энергия и масса — разные понятия. Как открыл Ломоносов, отдельно сохраняется масса, отдельно энергия, они не исчезают и не возникают, а лишь передаются, соответственно, — в виде частиц и их движения от одних тел другим. Почему же тогда работает формула СТО, и потеря массы m в ядерной реакции приводит к выделению энергии E=mc2? Мы видели, что "потеря" массы, как в химической реакции, связана с уходом трудноуловимых, незаметных частиц. Так, в реакции синтеза ядра, набрав большие энергии в ходе сближения, соударяются неупруго: вся их энергия идёт на выбивание из ядра мелких осколков. Эти осколки-частицы и уносят избыточную энергию ядра, которую передают окружающим телам в форме тепла. Если же соударение упругое, то образованное ядро переходит в возбуждённое состояние. Тогда его части колеблются: после удара ядра отскакивают, затем снова сходятся и т. д., пока не истратят всю энергию на излучение, сопровождающее любые колебания зарядов. Это даёт ещё один механизм генерации γ-излучения возбуждённых ядер (§ 3.7).
Итак, "потеря" массы связана с уходом нейтральных частиц. Чем больше энергия E соударения ядер, тем больший кусок они друг из друга выбьют. То есть, чем выше энерговыделение E реакции, тем больше теряемая ядрами масса m. Это подобно высеканию искры двумя кремнями: чем с большей силой и скоростью их сшибаешь, тем больше вылетает осколков-искр и тем они ярче, горячей, энергичней. Поскольку скорость V лёгких трудноуловимых частиц, вылетающих из ядер, обычно близка к скорости света c, то их кинетическая энергия E=mV2/2 — порядка mc2. Отсюда — соответствие между теряемой массой m и выделяемой энергией E=mc2, хотя и не вполне строгое. Но, ведь, и в опыте физики обычно не могут точно измерить энергию одной ядерной реакции, имея дело с ансамблями частиц, число которых не известно, да и энергия не всегда точно измерима. Итак, в рамках классической физики тоже есть соответствие между выделяемой энергией E и теряемой массой m в виде соотношения E=mc2, но смысл его — иной, чем в СТО, и оно отнюдь не такое строгое.
В реакциях распада выделение энергии тоже сопровождается потерей массы. Ведь, при делении ядра кроме двух дочерних ядер должны вылетать и совсем мелкие осколки. Аналогично, если разбить кирпич ударом на половинки, то, кроме них, останутся и мелкие крошки, осколки. Так же и при отрыве капель жидкости, — кроме основной капли, в перетяжке всегда отделяется и крошечный шарик Плато (Рис. 130). Поэтому, если уж следовать капельной модели ядра, физикам следовало принять, что такая же мелкая капля-частица образуется при делении ядер. Эта частица и уносит "пропавшую" массу. В случае деления тяжёлых ядер, эта частица — нейтрон (если его реальная масса чуть выше принятой, это и породит иллюзию исчезновения массы в реакции, § 3.15). В случае α-распада таких частиц вообще не обнаружили, хотя по капельной модели ядра они тоже должны бы быть. Понятно, почему и здесь масса m теряемой частицы соотносится с энергией распада: чем больше энергия деления E, чем мощней удар, сотрясающий и разрушающий частицу, тем массивней вылетающие осколки.
Рис. 130. Деление капель (или ядер) с образованием шарика Плато (частицы) из перетяжки [135].
Впрочем, всё это относилось к реакциям, а ядра обладают определённой массой, не зависящей от того, каким путём, — делением или синтезом, — они получены. Теряемый в реакциях вес (дефект массы) — это лишь разница масс исходных и конечных ядер. Значит, что-то задаёт устойчивую массу ядра, а, при делении или синтезе, ядро лишь сбрасывает лишнюю массу-балласт в виде частиц. Что же это за частицы? Вероятно, это упомянутые ранее гаммоны (§ 3.8). Ведь типичный дефект масс составляет около 0,04 масс протона (или кратную величину), то есть порядка 70me, а это близко к массе гаммона в 66me, так же бесследно исчезающей в реакциях с элементарными частицами. Почему же теряется всегда одна и та же масса, а ядра имеют стандартный вес? Ответ прост: каждое ядро состоит из определённого числа стандартных частиц, имеющих постоянную массу. И, точно, любое ядро состоит из нейтронов и протонов, однако сумма их масс никогда не равна массе образуемого ими ядра, — эту разницу и назвали "дефектом массы". По закону сохранения массы, этого не может быть, — частицы после слияния должны вместе весить столько же, сколько и до. Значит, в ядре есть и другие частицы. Действительно, мы выяснили, что ядро — это не одни голые протоны и нейтроны: в ядре эти частицы уложены, как в кульке, в бипирамидальном остове, каркасе (§ 3.3), вероятно, тоже имеющем стандартный вес, который надо учитывать. Иными словами масса ядра — это вес брутто (товар с упаковкой), а сумма масс протонов и нейтронов — это вес нетто (чистый вес, без тары).
Рис. 131. Масса m ядра складывается из масс нейтронов n, остова o, протонов p, уложенных в остове, словно семечки, горошины в кульке.
В таком случае, масса ядра m=nN+o+pZ, где n — масса нейтрона, N — число нейтронов, o — масса остова (упаковки), p — масса протона, Z — число протонов (Рис. 131). Тогда масса ядра водорода H=o+p, дейтерия D=n+o+p, гелия He=2n+o+2p. Поэтому, сумма масс двух ядер дейтерия D, каждое из протона и нейтрона, — не равна массе ядра гелия He. Оно чуть легче: при соединении двух ядер D один остов оказывается лишним, D+D=2n+2o+2p=He+o. Избыточный остов отделяется и улетает при слиянии ядер, унося массу и, — отдавая при соударениях энергию синтеза в виде тепла. Учёные же приписали этот дефект массы — переходу её в энергию, поскольку пренебрегли массой остова o, приравняв вес кулька, тары, — к нулю. Тем же вызван дефект массы у других ядер. Построенная Таблица 6 показывает, что дефект почти исчезает, если каждое ядро, кроме протонов и нейтронов, содержит ещё остов. Найденные по методу наименьших квадратов массы n, o, p, соответствуют не только массе ядер, но и найденной Чедвиком разнице масс нейтрона и протона (порядка массы гаммона), близкой к массе остова в 0,016·1822=30 me [55]. Как видим, вес голого протона p=0,992 отличается от обычно измеряемой в опытах массы ядра водорода H=o+p=1,008, поскольку в ядре протон окружён ещё остовом o=0,016. Если в ходе распада ядро лишается остова, оно его вскоре восстанавливает, поскольку в вакууме всегда носится множество мелких нейтральных частиц (октонов, гаммонов и т. п.).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Баллистическая теория Ритца и картина мироздания"
Книги похожие на "Баллистическая теория Ритца и картина мироздания" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Сергей Семиков - Баллистическая теория Ритца и картина мироздания"
Отзывы читателей о книге "Баллистическая теория Ритца и картина мироздания", комментарии и мнения людей о произведении.