» » » » Сергей Семиков - Баллистическая теория Ритца и картина мироздания


Авторские права

Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Здесь можно скачать бесплатно "Сергей Семиков - Баллистическая теория Ритца и картина мироздания" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство ООО "Стимул-СТ", год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Рейтинг:
Название:
Баллистическая теория Ритца и картина мироздания
Издательство:
ООО "Стимул-СТ"
Год:
2010
ISBN:
5-88022-175-X
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Баллистическая теория Ритца и картина мироздания"

Описание и краткое содержание "Баллистическая теория Ритца и картина мироздания" читать бесплатно онлайн.



Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.






Выше мы видели, что электронные слои в атоме и нуклонные слои в ядре заполняются по сходному принципу и, по сути, заданы единой структурой (§ 3.3, § 3.6). Подобие атомных и ядерных структур отражено и в спектрах. Выше рассмотрены атомные спектры, порождаемые колеблющимся электроном в возбуждённом атоме. При этом, каждому атому отвечал свой особый линейчатый спектр, — индивидуальный "штрихкод атома". Точно так же, существуют характерные ядерные спектры возбуждённых ядер. И атомные, и ядерные спектры излучаются при колебаниях зарядов, но, если в атоме это — электроны, то в ядрах — протоны. Они тоже колеблются с жёстко заданными, индивидуальными для каждого типа ядер частотами в магнитном поле атомного остова (Рис. 115). Как выяснили, постоянная Ридберга R=h/16π2ca2M (§ 3.1). Поскольку заряды колеблются в одном и том же атомном остове, различие будет лишь в шаге a электрон-позитронной сетки и массе M генерирующего заряда. Ранее было найдено, что расстояние между узлами, в которых колеблются электроны атома, составляют порядка размеров атома: a≈a0=0,53×10–10 м, то есть порядка одного ангстрема (1 Å=10–10 м). Точно так же, расстояния между узлами, в которых колеблются протоны, составляют порядка размеров ядра и классического радиуса электрона, который как раз и задаёт шаг электрон-позитронной сетки: a≈r0=2,82×10–15 м, то есть порядка одного ферми (10–15 м). Раз в ядрах расстояния a≈r0 меж электронами и позитронами в 104–105 раз меньше расстояний a≈a0 в электронных слоях, а масса M протона в 2000 раз больше электронной, то R для ядер выйдет в 105–106 раз больше.

Рис. 115. Два масштаба сил и спектров. Протоны p в узлах мелкой сетки генерируют в магнитном поле уголка ядерные спектры, а электроны e в узлах крупной сетки дают атомные спектры.


Соответственно, характерные частоты f~R ядерных спектров в 105 раз выше атомных. И, — точно, ядерные спектры лежат в рентгеновском и гамма-диапазоне 1016–1019 Гц, тогда как атомные, лежащие в инфракрасном и оптическом диапазоне 1011–1015 Гц, имеют на 5 порядков меньшие частоты. Итак, схожая структура спектров, в виде ряда дискретно меняющихся частот, характерных для данного ядра или атома, говорит о едином механизме их генерации. Разница лишь в масштабе сеток, между узлами которых смещается генерирующий заряд. И, если атомные спектры дают ключ к разгадке строения атома, то ядерные — к строению ядер.

Рассмотренный механизм генерации ядерных спектров, судя по всему, не единственный, поскольку ядра излучают не только от возбуждения ударами, но и при возбуждении в процессе ядерных реакций и при спонтанном переходе из одного состояния в другое. Такое гамма-излучение генерируют, вероятно, уже не колебания отдельных протонов, а колебания отдельных частей ядра, имеющие, подобно колебаниям молекул или грузов на пружинке, жёстко заданные частоты, о чём будет рассказано ниже (§ 3.13). Излучение ядер может возникать и от резкого торможения соударяющихся ядер, в случае неупругого удара, порождая огромные ускорения. А ускоренно движущееся заряженное ядро, по законам электродинамики, должно излучать электромагнитную энергию. Тогда, вся кинетическая энергия сталкивающихся ядер может преобразоваться в энергию излучения, отчего такой удар и называют неупругим.

Возникает гамма-излучение и при перестройке протон-нейтронной структуры, то есть, при спонтанном переходе из менее устойчивого структурного состояния — в более устойчивое. Как было показано в предыдущем разделе (§ 3.6), нуклоны могут располагаться в ядре различным образом. При этом, разным способам размещения соответствует разная энергия связи, так что переход из одного состояния в другое, более устойчивое, сопровождается выделением соответствующей энергии в виде гамма-излучения. Ведь, при такой перестройке ядра, перемещаемые нуклоны механически встряхиваются, начиная колебаться в магнитном поле ядерного остова, излучая гамма-лучи. Причём, для каждого ядра, для каждой реакции, опять же, свойственны свои характерные частоты излучения. По аналогии с атомами, ядра на тех же частотах сильнее всего и поглощают излучение. Такая строгая индивидуальность, жёсткая определённость частот гамма-излучения, аналогичная наличию характерных линий в атомных спектрах, находит применение на практике, в качестве эталонных частот, для сравнения параметров излучателя и поглотителя и выявления ничтожных сдвигов частоты, вызванных движением источника и релятивистскими эффектами. Чаще всего, применяют упомянутый эффект Мёссбауэра, измеряя степень поглощения гамма-излучения от источника поглотителем. Эффект Мёссбауэра позволяет выявлять тончайшие сдвиги частоты от движения источника и поглотителя и других влияющих на частоту эффектов.

Кстати, в эффекте Мёссбауэра сталкиваемся с ещё одним провалом квантовой теории, которая предсказывала, что эффект не может наблюдаться ввиду большого импульса отдачи, получаемого ядром при испускании гамма-кванта и меняющего частоту излучения, исключая его резонансное поглощение другим ядром [135]. Но, вопреки квантовой теории, эффект Мёссбауэра всё же был открыт на опыте, в очередной раз посрамив кванторелятивистов и доказав, что излучение исходит не отдельными порциями-квантами, а — классической сферической волной, симметрично расходящейся во все стороны и потому не вызывающей отдачи. Также, именно эффект Мёссбауэра позволяет установить важную связь строения молекул, атомов, их электронных оболочек и оптических спектров — с ядерными свойствами этих атомов и спектром их гамма-излучения, о чём говорилось выше (§ 3.6) и ещё будет сказано ниже (§ 4.16).

§ 3.8 Состав и масса элементарных частиц

Последовательная теория элементарных частиц, которая предсказывала бы возможные значения масс элементарных частиц и другие их внутренние характеристики, ещё не создана.

Советский Энциклопедический Словарь

В настоящее время известно более сотни элементарных частиц [85, 86]. Это изобилие давно привело к мысли, что частицы отнюдь не элементарны, а состоят из ещё более простых элементов. Полагали, что этими элементами должны быть кварки, — гипотетические частицы с невероятными свойствами. Так, любой из кварков много тяжелей частицы, которую они образуют: часть больше целого! Поэтому многие считают, что гипотеза кварков и так называемая квантовая хромодинамика — это чисто формальный способ систематизации частиц. Ну, а такая фундаментальная характеристика частиц как масса, почему-то игнорируется учёными. А, ведь, именно массы позволили Д.И. Менделееву навести порядок в мире химических элементов, среди многих десятков которых царил некогда такой же хаос. На основе известных масс элементов не только была построена их система (таблица Менделеева), но и понято строение атома. Далее покажем, что и для понимания строения элементарных частиц их масса и закон её сохранения, вводимый БТР, может иметь ключевое значение.

Прежде всего, естественно допустить, что наиболее просты и элементарны частицы, обладающие наименьшей массой (так и среди атомов самый простой — водородный). К ним можно отнести электрон, массу М которого обычно берут за единицу измерения масс других частиц (М=1), и мельчайшие из мезонов [86]. А, именно, мюон (μ-мезон) — заряженная частица, которая тяжелей электрона в 207 раз (M=207), нейтральный пион (π0-мезон, M=264) и заряженный пион (π+- или π—-мезон с M=273). Думается, именно из этих частиц, как из деталек конструктора, и построены все прочие элементарные частицы, имеющие более высокие значения массы.

И, точно, беря эти три вида мезонов в разных сочетаниях, можно получить массу любой другой частицы. Например, два заряженных и два нейтральных пиона дают в сумме массу 1074,4. Это с точностью до 0,04 % совпадает с массой η0-мезона (M=1074). Так что, эта частица состоит, вероятно, из четырёх пионов: π+, π—, π0, π0. Недаром, η0-мезон распадается всегда именно на пионы. Другой пример: 8 заряженных пионов дают в сумме массу 273×8= 2184 — это масса Λ0-гиперона, отличная от истинной всего на 0,03 %. Значит, лямбда-гиперон состоит из четырёх положительных и четырёх отрицательных пионов: Λ0=4π+ + 4π—.

Судя по точности и частоте таких совпадений, они — не случайны и должны открыть тайну строения частиц. Для этого достаточно составить несложную компьютерную программу, по-разному комбинирующую массы трёх мезонов (M=207; 264; 273) и находящую совпадения их сумм с известными массами элементарных частиц. Результаты поиска программы сведены в систему (Таблица 2). В первой колонке стоит обозначение частицы, в следующих трёх — её состав (по числу мезонов), в пятой — расчётная масса, в шестой — измеренная, в седьмой — их разница в процентах, не превосходящая 0,2 %.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Баллистическая теория Ритца и картина мироздания"

Книги похожие на "Баллистическая теория Ритца и картина мироздания" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Семиков

Сергей Семиков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Семиков - Баллистическая теория Ритца и картина мироздания"

Отзывы читателей о книге "Баллистическая теория Ритца и картина мироздания", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.