» » » » Сергей Семиков - Баллистическая теория Ритца и картина мироздания


Авторские права

Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Здесь можно скачать бесплатно "Сергей Семиков - Баллистическая теория Ритца и картина мироздания" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство ООО "Стимул-СТ", год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Рейтинг:
Название:
Баллистическая теория Ритца и картина мироздания
Издательство:
ООО "Стимул-СТ"
Год:
2010
ISBN:
5-88022-175-X
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Баллистическая теория Ритца и картина мироздания"

Описание и краткое содержание "Баллистическая теория Ритца и картина мироздания" читать бесплатно онлайн.



Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.






Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=43. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).

Рис. 119. Строение октона и гаммона, составленных из чередующихся электронов и позитронов.


Раз мюоны и пионы — составные, то все прочие частицы, представленные их наборами, можно представить и в виде сочетаний более простых частиц. Поэтому, пользуясь прежними таблицами (Таблица 2 и Таблица 3, учтённые в колонке I) и тем, что μ=3Г+О, π0=4Г, а π—= 4Г+О, можно нарисовать более полную и точную картину микромира (Таблица 4), изображая все частицы в виде наборов гаммонов и октонов (колонка II). В таком представлении минусовые массы окончательно исчезают. Так, K+-мезон состоит из 14 гаммонов и 5 октонов, что даёт для него M= 66·14+8·5= 964 (реально M= 966). K0-мезон построен из 14 гаммонов и 6 октонов, откуда M=66·14+8·6= 972 (реально M= 974). Неточность возникает от округления масс гаммона и октона до ближайшего целого числа и неучтённых масс электронов и позитронов, дополняющих комбинацию. Но грубо массу любой частицы можно искать по формуле M=66x+8у, где x и y — это числа гаммонов и октонов в частице.

Итак, все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9), дополненных иногда, для баланса заряда, электроном или позитроном. Существование гаммонов подтверждают реакции распада пионов, где бесследно исчезает масса, кратная 66 (Рис. 116). А реальность октонов следует из распада мюонов и того, что в семействах частиц (Таблица 4, выделены серым) массы M разнятся в среднем как раз на 8,5 единиц. Похоже, гаммоны и октоны, подобно нуклонам в ядре, выстраиваются в некие пространственные структуры, что объясняет стабильность одних частиц и нестабильность других. Мерой стабильности будет, как везде, степень симметрии, совершенства частицы, близости её к правильным геометрическим телам [21]. Частицы, структура которых несовершенна, — нестабильны и быстро распадаются. Так, и в природе: прочнее всего, тела, имеющие совершенную, кристаллическую форму. Менее прочны кристаллы с дефектами структуры. Наконец, наименее прочны аморфные тела. Всё это хорошо видно на примере кварца, кварцевого стекла и обычного стекла.

Более стабильны сочетания, в которых число частиц равно кубу или квадрату целого числа (Рис. 120). Взять, к примеру, гаммоны или октоны, построенные, соответственно, из 64 и 8 частиц. Так же, и пионы, состоящие из 4-х гаммонов, образующих квадрат 2x2, живут заметное по меркам микромира время. По той же причине, достаточно стабилен η-мезон, составленный из 4x4=16 гаммонов. Наиболее симметричен протон: в нём 27=33 гаммонов. Поэтому протон — одна из немногих стабильных частиц. Другая частица, у которой число гаммонов равно кубу, — это Λ+-гиперон: 64=43 (Таблица 5). Вот почему эта частица, несмотря на большую массу, при которой стабильность обычно мала, обладает, всё же, заметным временем жизни.

Рис. 120. Возможная структура элементарных частиц, состоящих из гаммонов, в свою очередь образованных электронами и позитронами.


Пользуясь этим, можно предсказать новые частицы. Особая стабильность должна отличать частицу из восьми гаммонов, образующих куб, поэтому назовём её "кубоном", обозначив буквой "C" (Рис. 120). Однако, такая частица с M=66·8=528 до сих пор не открыта. Возможно, причиной тому её нейтральность и стабильность (от кубической структуры), что мешает её обнаружить, как и гаммоны с октонами. Правда, согласно книге Д. Данина [43], в арагацкой высокогорной обсерватории среди космических лучей некогда уверенно регистрировали частицы с массами около 300, 500 и 1000 электронных. Частицы с массой около 300 (π-мезоны) и 1000 (K-мезоны) действительно были впоследствии открыты. Однако частицы с M порядка 500 до сих пор не найдены. Так, может, это были кубоны? Их существование подтверждает и распад η-мезона, который при делении на два заряженных пиона, бесследно теряет в весе как раз массу 528. Не кубон ли её уносит?

Такой кристаллический подход к объяснению стабильности частиц позволяет понять, почему из всех частиц наиболее стабилен, прочен и долгоживуч протон. Таблица 4 сразу даёт на это ответ: только у протона число гаммонов x=27 составляет куб целого числа: 27=33. По-видимому, эти 27 гаммонов складываются в правильный куб, вроде кубика Рубика, тоже состоящего из 27 мелких кубиков. Что же касается шести октонов, то они, вероятно, выполняют в этом кубе связующую функцию (подобно тому, как в кубике Рубика есть шесть сцепляющих кубики шарниров) или располагаются на шести его гранях. Таким образом, лёгкие октоны могут играть внутри частиц ту же роль, что нейтроны в ядрах, будучи связующим звеном, цементом, прокладкой между блоками частиц. Могут они выполнять и функции гнезда, в котором крепко сидят электроны и позитроны, придающие частицам заряд. Учитывая сказанное, можно узнать строение и всех прочих частиц, сложенных из кубиков, наподобие игрушечных зданий (Рис. 121). Таким образом, частицы должны выглядеть не как шарики, а иметь углы, грани, кромки, совсем как кристаллы. Микромиру, равно как объектам макро-, да и мегамира, свойственно кристаллическое, ячеистое, клеточное строение!

Рис. 121. Возможное строение протона и пионов, построенных из сотен электронов и позитронов, как кристаллы соли — из ионов Na+ и Cl-.


Стоит отметить, что из одного и того же числа гаммонов и октонов, по-разному их соединяя, можно составить несколько устойчивых конструкций. Возможно, поэтому частицы данной массы и заряда встречаются в нескольких вариантах. Точно так же, и ядра, имеющие одинаковый протон-нейтронный состав, могут иметь разные свойства и периоды полураспада за счёт разного пространственного размещения в них протонов и нейтронов (§ 3.6). Так же, и в химии у молекул может быть идентичный атомный состав, но разные свойства. Химические свойства молекулы зависят не только от того, какие её составляют атомы, но и от того, в каком порядке они располагаются и какие пространственные структуры образуют, как было открыто ещё русским химиком А. Бутлеровым, и как было предсказано ещё до н. э. Демокритом и Лукрецием (§ 5.16). Это явление получило название изомерии, а частицы одинакового состава, но разных свойств были названы изомерами. Точно так же, как у молекул, есть изомеры у ядер (§ 3.6) и элементарных частиц. Так, K0-мезоны состоят из двух сортов частиц: K0S и K0L [86]. Равенство их масс, зарядов и магнитных моментов говорит об идентичности их электрон-позитронного состава, но располагаются электроны и позитроны в изомерах по-разному, что и ведёт к различию их свойств (времён жизни и типов распада). Возможен и такой случай, когда электроны и позитроны образуют одинаковые, но зеркально симметричные частицы, — зеркальные изомеры, также известные у органических молекул, например, у сахара, — как было открыто ещё Л. Пастером. Возможно, существование, в разной пропорции, правых и левых зеркальных изомеров частиц — ответственно за преимущественное испускание продуктов распада частиц в неком избранном направлении (§ 3.11).

Как же возникает геометрически точная кристаллическая форма атомов, ядер и частиц? Разве не должна материя собираться под действием сил притяжения в компактные капли-шарики, какими любят представлять частицы? Природа их геометрически чёткой формы та же, что у кристаллов, правильные грани которых когда-то тоже удивляли людей. Видно, форма кристаллов и подсказала Платону идею частиц-многогранников (§ 5.3). Ровные плоские грани кристаллов возникают оттого, что они построены из одинаковых упорядоченно сложенных частиц, атомов. Правильное размещение частиц обеспечивает минимум энергии связи, к которому стремятся все системы. Атомам энергетически выгодней не надстраивать атомную плоскость, а дополнять атомные слои до ровных, контактируя с возможно большим числом соседей. Так и возникают правильные многогранные формы кристаллов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Баллистическая теория Ритца и картина мироздания"

Книги похожие на "Баллистическая теория Ритца и картина мироздания" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Семиков

Сергей Семиков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Семиков - Баллистическая теория Ритца и картина мироздания"

Отзывы читателей о книге "Баллистическая теория Ритца и картина мироздания", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.