» » » » В Степин - Новая философская энциклопедия. Том второй Е—M


Авторские права

В Степин - Новая философская энциклопедия. Том второй Е—M

Здесь можно скачать бесплатно "В Степин - Новая философская энциклопедия. Том второй Е—M" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство МЫСЛЬ, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Новая философская энциклопедия. Том второй Е—M
Автор:
Издательство:
МЫСЛЬ
Жанр:
Год:
2010
ISBN:
978-2-244-01115-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Новая философская энциклопедия. Том второй Е—M"

Описание и краткое содержание "Новая философская энциклопедия. Том второй Е—M" читать бесплатно онлайн.



Новая философская энциклопедия дает обзор мировой философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения российских и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе сводом философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.

При подготовке данного издания внесены некоторые уточнения и дополнения. В частности, в первом томе помещена статья, посвященная 80-летию Института философии РАН в четвертом - именной указатель по всем томам.






425

ЛОГИКА ПРЕДИКАТОВ Правило эквивалентной замены используется, в частности, при осуществлении процедуры приведения формул языка логики предикатов к какому-либо стандартному, каноническому виду. Наиболее известным каноническим типом формул языка логики предикатов являются предваренные нормальные формы. Формула находится в предваренной нормальной форме, если она имеет вид Q^Q^.-.Q^B, где каждое Q. есть V или 3, переменные а , а2,..., ап попарно различны и В не содержит кванторов (т. е. формула начинается кванторнои приставкой, после которой следует бескванторная формула). Доказуемо метаутверждение о том, что для любой формулы языка логики предикатов существует логически эквивалентная ей формула в предваренной нормальной форме (при приведении формул к данному каноническому виду используются законы вынесения кванторов, причем иногда более сложные, чем указанные выше). Разновидностью предваренных являются т. н. сколемовские нормальные формы — замкнутые формулы, в которых всякий квантор существования предшествует в кванторнои приставке всякому квантору общности. Для каждой формулы А языка логики предикатовбезпредметныхи предметно-функциональных констант, но с бесконечным числом предикаторных констант произвольной местности существует формула В в сколемовс- кой нормальной форме, равносильная ей по доказуемости (т. е. такая, что |— А, если и только если |— В). Первопорядковая логика может быть модифицирована за счет расширения выразительных возможностей ее языка. Наиболее естественным расширением является введение отношения равенства между индивидами (тождества индивидов). Вовлечение этого отношения в сферу логического анализа оправдано тем, что оно не менее фундаментально, чем исследуемые в логике отношения присущности свойства предмету, включения класса в класс и др. Если в алфавит вводятся предметно-функциональные константы, то отношение равенства позволяет удобным образом выражать утверждения о результатах применения соответствующих функций к различным аргументам. Кроме того, использование знака данного отношения (=) обеспечивает более адекватный анализ многих естественно-языковых контекстов, напр. т. н. исключающих высказываний. Так, логическая форма высказывания «Всякий металл, кроме ртути, находится в твердом состоянии» может быть выражена с использованием предикатора равенства формулой Vx((P(jt) л-.(х = a)) =>Q(x)) A-iQ(a), где константы а, Р, Q соответствуют дескриптивным терминам «ртуть», «металл», «находится в твердом состоянии». Классическая логика предикатов с равенством строится следующим образом. Алфавит пополняется выделенной двухместной предикаторной константой равенства =. Появляется новый тип формул: t, = t2, где t, и t2 — термы. В семантике константе = в качестве значения сопоставляется множество всех пар <и, иglt;, где и — элемент универсума U (или же предметно-истинностная функция, которая ставит в соответствие значение И только парам одинаковых объектов из U). Формула t, = t2 примет значение И в некоторой модели <U, I> при распределении ф значений предметных переменных, если и только если значения термов t, и t2 в данной модели при данном распределении совпадают. Остальные семантические понятия остаются прежними. Адекватное аксиоматическое представление логики предикатов с равенством можно получить за счет присоединения дополнительных схем аксиом: схемы рефлексивности равенства Va(a=a) и схемы замены равного равным VaV?(a = ? z> (A(a) z> A(?))), где A(?) — есть результат замены некоторого числа (необязательно всех) свободных вхождений переменной a в А(а) на переменную ?, причем заменяемые вхождения не должны находиться в области действия кванторов по ?. Средствами логики предикатов с равенством может быть определен квантор, особенно часто встречающийся в математических контекстах, «существует единственный» (символически - 3!): 3! А(а) = Df 3a(A(a)AV?(A(?)=)? = а)). Язык логики предикатов первого порядка является удобным средством для строгого построения на его основе конкретных, прикладных теорий. В этом случае вместо абстрактных предметных, предикаторных и предметно-функциональных констант в алфавит вводятся конкретные термины словаря теории — имена объектов ее предметной области, знаки их свойств и отношений, знаки заданных на данной области предметных функций. Сами прикладные первопорядковые теории (их часто еше называют элементарными) строятся обычно аксиоматически. К логической части (аксиомам и правилам вывода исчисления предикатов) добавляется собственная часть прикладной теории — постулаты, отражающие закономерности ее предметной области. Простейшими примерами первопорядковых теорий являются т. н. логики отношений: теория отношения эквивалентности (при этом в язык вводится его знак, напр. =, и добавляются аксиомы, указывающие на свойства данного отношения: Va(a=a) — рефлексивность, VaV?(a=?z>?=a) — симметричность, VaV?Vy((a=?&? ^у) =эа =у) — транзитивность), теория отношения частичного порядка (вводится символ этого отношения, напр., < , и собственные аксиомы рефлексивности, транзитивности, а также VaV? ((a<?&?<a) zxx = ?) — антисимметричность) и др. Наиболее известным примером элементарной теории является система формальной арифметики Пеано. Ее исходные нелогические символы — имя 0, знаки функций ' (прибавления единицы), + (сложения), • (умножения); в алфавите содержится также символ =. Знаки других арифметических объектов, свойств, отношений и функций вводятся посредством определений (напр., 1 =Dr 0'). Далее к логическим аксиомам добавляются собственно арифметические. Еще одним побудительным мотивом расширения выразительных возможностей языка логики предикатов является стремление к более адекватному логическому анализу контекстов естественного языка. Так, точное воспроизведение структуры описательных имен предполагает обогащение ее языка операторами дескрипции, ведь в стандартном первопорядковом языке выразим лишь один тип сложных имен — образованных с использованием предметных функторов. Обычно различается два оператора дескрипции — оператор определенной дескрипции i и оператор неопределенной дескрипции е. При введении их в язык логики предикатов в нем появляется новые типы сложных термов — lOtA («тот самый единственный а, который удовлетворяет условию А») и еосА («некий а из числа тех, которые удовлетворяют условию А»), где a — предметная переменная, а А — формула. Поскольку теперь определение терма содержит ссылку на понятие формулы, оба понятия — терма и формулы — вводят совместным индуктивным определением. Логические системы с оператором определенной дескрипции были построены и изучены Б. Расселом, а Д. Гильбертом было сформулировано е-исчисление — обобщение первопорядковой логики предикатов за счет добавления е-термов.

426

ЛОГИКА ПРЕДИКАТОВ Другое расширение стандартной логики предикатов связано с рассмотрением т. н. обобщенных кванторов (кванторов Генки на). Если в стандартной кванторной приставке любой формулы, находящейся в предваренной нормальной форме, каждый квантор содержится в области действия всех предшествующих ему кванторов, то обобщенные кванторы представляют собой кванторные комплексы, составляющие которых не обязаны более быть упорядочены отношением строгого линейного порядка. Введение обобщенных кванторов позволяет строить адекватные модели достаточно сложных фрагментов естественного языка. В первопорядковой логике предикатов, как уже говорилось, разрешается квалификация только предметных переменных, т. е. кванторы могут быть соотнесены лишь с предметами, индивидами («всякий предмет», «некоторый предмет»). Для логического анализа контекстов, в которых кванторы соотносятся также со свойствами, отношениями, функциями, необходим переход к логике второго порядка. В алфавите ее языка наряду с предикаторными константами Р", Qn, Rn, Р^,... имеются предикаторные переменные различной местности Р1, Q", /Р1, Р,п,— (в алфавит могут быть введены также и предметно-функциональные переменные/, g", /*",/[",.-•)• В атомарных формулах n(t,,t2,...,tn) на месте П могут использоваться как предикаторные константы, так и предикаторные переменные(аналогично,всложныхтермахФ(1],12,...Дп)вроли Ф может выступать теперь предметно-функциональная переменная). «Кванторные» пункты в определении формулы видоизменяются за счет разрешения использовать в формулах видов VolA и ЗаА на месте а не только предметные, но также предикаторные и предметно-функциональные (если они есть в алфавите) переменные. Средствами языка второпорядковой логики предикатов могут быть воспроизведены логические формы многих высказываний, которые нельзя выразить в первопорядковом языке (напр., «У Марса и Земли есть общие свойства» — ЗР(Р(а) л Р(Ь)), «Марс обладает всеми свойствами, присущими каждой планете» — V/\\/x(S(x) z> Рх)) z> P(a)), где константам a, b и S соответствуют термины «Марс», «Земля», «планета»). Семантически логика предикатов второго порядка строится по аналогии с первопорядковой. При распределении значений переменных предикаторным и предметно-функциональным переменным приписываются сущности тех же типов, которые сопоставляются в модели соответствующим константам. Правила установления значений термов и формул незначительно адаптируются с учетом синтаксических особенностей второпоряд- кового языка. Понятие общезначимой формулы — обычное. Синтаксическое построение логики предикатов второго порядка сталкивается с фундаментальной проблемой метатео- ретического характера — класс общезначимых формул второпорядковой логики принципиально не аксиоматизируем, не формализуем, т. е. не существует исчисления, класс теорем которого совпадал бы с классом общезначимых формул. Тем не менее в качестве второпорядкового исчисления предикатов обычно рассматривают некоторую неполную формальную систему, которая получается естественным обобщением первопорядкового исчисления. Логика предикатов второго порядка является очень богатой логической теорией. В ней, напр., может быть определен пре- дикатор равенства: а = ? = DftP(P(a) = Рф)) (это определение по своей сути повторяет лейбницевский принцип «тождественности неразличимых»: равными, тождественными объявляются объекты, обладающие одинаковыми свойствами). Один из возможных путей расширения выразительных средств логики второго порядка состоит во введении в ее язык предикаторов более высоких ступеней, «предикаторов от предикаторов». Они выражают свойства свойств или отношений, отношения между свойствами или отношениями. Так, в контексте «Отношение родства симметрично» термин «симметрично» репрезентирует свойство отношения (родства), а в контексте «Щедрость и скупость — противоположные качества» термин «противоположно» представляет отношение между свойствами (щедростью и скупостью). При указанном подходе натуральные числа 0,1,2,... могут рассматриваться как свойства свойств и определяться средствами второпорядковой логики предикатов следующим образом: 0(Р) ее u-BxPlx), ЦР) = n-BxPfx), 2(F) ^ ^xByi-TX = = УЛ Р(х) А Р(у) A \/z(P(z) ^>(Z = XVZ = y)))uT. Д. Среди неклассических систем логики предикатов следует особо выделить т. н. свободную логику — нестандартную теорию квалификации, при построении которой отказываются от обязательного существования индивидов в области интерпретации, а также допускают пустоту термов. Часто неклассические исчисления предикатов строятся так, что их отличие от классического проявляется — в самой системе аксиом и правил вывода — лишь на пропозициональном уровне: вместо схем аксиом классического исчисления высказываний выбираются схемы аксиом соответствующего неклассического пропозиционального исчисления (подобным образом обычно строятся кванторные системы интуиционистской логики и минимальной, многие системы модальной логики и релевантной логики). В этом отношении специфичным является конструктивное исчисление предикатов, в котором (наряду с модификацией пропозициональной части) принимаются особые, характерные именно для кванторной теории постулаты, формализующие т. н. принцип Маркова (простейшая формулировка данного принципа такова: Vjc(P(jc) v -,P(jc)) 3 (-r^JcP(jc) => BjcP(jc)). Весьма нетривиальной и интересной с философской точки зрения оказалась проблема построения кванторных расширений модальных логик, известная также как проблема кванти- фикации в модальных контекстах. При попытке построения модальной логики предикатов возникает ряд существенных трудностей содержательного характера, на которые обратил внимание У. Куайн. Помимо известных проблем, связанных с нарушением принципа взаимозаменимости в неэкстенсиональных контекстах (а модальные контексты — один из их типов), обнаружилось, что к неожиданным результатам в модальной логике приводит применение правила введения квантора существования (знаменитый куайновский парадокс Вечерней и Утренней звезды); во многих кванторных модальных системах ряд теорем не согласуются с интуицией (к ним относятся, напр., формула Баркан 03хР(х)зЕЬс0Р(х), позволяющая заключать от возможности существования к актуальному существованию некоторого объекта, теорема VjcVj<x = у Z) их = у), означающая необходимость любого утверждения о равенстве). Но главной причиной философской ущербности модальной логики предикатов, по мнению У. Ку- айна, является реанимация в ее рамках схоластического понятия модальностей de ге (модальностей, квалифицирующих характер связи признака с предметом) и причастность этой теории эссенциализму (метафизической концепции, согласно которой предметы сами по себе — независимо от того, как они представлены в языке, — обладают некоторыми свойствами необходимо, а некоторыми случайно).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Новая философская энциклопедия. Том второй Е—M"

Книги похожие на "Новая философская энциклопедия. Том второй Е—M" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора В Степин

В Степин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "В Степин - Новая философская энциклопедия. Том второй Е—M"

Отзывы читателей о книге "Новая философская энциклопедия. Том второй Е—M", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.