Авторские права

О. ОРЕ - Приглашение в теорию чисел

Здесь можно скачать бесплатно "О. ОРЕ - Приглашение в теорию чисел" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство "Наука" Главная редакция физико-математической литературы, год 1980. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
О. ОРЕ - Приглашение в теорию чисел
Рейтинг:
Название:
Приглашение в теорию чисел
Автор:
Издательство:
"Наука" Главная редакция физико-математической литературы
Год:
1980
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Приглашение в теорию чисел"

Описание и краткое содержание "Приглашение в теорию чисел" читать бесплатно онлайн.



Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.






Если следовать общему правилу, изложенному в § 2 этой главы, то представление данного числа в двоичной системе довольно просто. Например, возьмем N = 1971. Повторное деление на b = 2 дает

1971 = 985 • 2 + 1,

985 = 492 • 2 + 1,

492 = 246 • 2 + 0,

246 = 123 • 2 + 0,

123 = 61 • 2 + 1,

61 = 30 • 2 + 1,

30 = 15 • 2 + 0,

15 = 7 • 2 + 1,

7 = 3 • 2 + 1,

3 = 1 • 2 + 1,

1 = 0 • 2 + 1,

Следовательно,

197110 = (1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1)2.

Ранее мы отмечали, что в двоичной системе числа имеют более длинные выражения, следовательно, становится труднее с первого взгляда оценить величину числа. По этой причине в языке ЭВМ часто используется восьмеричная система счисления (с основанием 8). Это является лишь незначительным изменением двоичной системы, которое получается разбиением бит в числе на группы по три. Это можно представить себе как систему с основанием

b = 8 = 23.

Коэффициентами при этом являются восемь чисел

0 = 000, 4 = 100, 1 = 001, 5 = 101, 2 = 010, 6 = 110, 3 = 011, 7 = 111.

В качестве иллюстрации возьмем число 1971 из рассмотренного выше примера; в восьмеричной системе оно представляется как

1971 = 011, 110, 110, 011 = (3, 6, 6, 3)8.

Таким образом, этот способ записи незначительно отличается от предыдущего. В действительности, такое деление на группы нам хорошо знакомо по обычным десятичным числам: при записи и произнесении большого числа мы обычно делим его цифры на группы по три, например,

N = 89 747 321 924.

Таким образом, можно сказать, что это является представлением нашего числа при основании b = 1000= 103.

В компьютерах иногда используются и другие представления чисел. Предположим, что мы хотим записать десятичное число, скажем, N = 2947, в ЭВМ, работающей в двоичной системе. Тогда, вместо того чтобы полностью менять N на двоичное число, можно было бы изменить лишь цифры этого числа

2 = 0010,

9 = 1001,

4 = 0100,

7 = 0111

и, таким образом,

N = 0010, 1001, 0100, 0111.

Такие числа известны как кодированные десятичные числа. Этот метод иногда называется «системой 8421», так как эти десятичные цифры представляются в виде сумм двоичных единиц

0 = 0000, 1 = 0001, 2 = 0010,

22 = 4 = 0100, 23 = 8 = 1000.

Такие кодированные десятичные числа неудобны для всех видов вычислений, но не всегда целью ЭВМ являются вычисления. Тем же образом, любая буква алфавита или любой другой символ могут быть приписаны какому-нибудь двоичному числу. Это означает, что любое слово или предложение можно запоминать как двоичное число. Таким образом, если бы мы были соответствующим образом натренированы и имели бы дело со столь же подготовленной аудиторией, то могли бы общаться лишь с помощью бит.


Система задач 6.5.

1. Найдите двоичное представление чисел Ферма (§ 3, гл. 2)

2. Найдите двоичные представления четных совершенных чисел (§ 4, гл. 3)

§ 6. Игры с числами

Существует множество видов игр с числами, некоторые из которых были известны еще в средние века. Большинство из них не представляет интереса для теории чисел, скорее всего, они подобно магическим квадратам принадлежат к классу кроссвордов с числами. Некоторые из них проиллюстрируем примерами.

Перед вами телеграмма, посланная школьником домой, с настоятельной просьбой:

  S E N D

  M O R E

_________

M O N E Y[11]

Будем рассматривать эту схему, как сложение двух четырехзначных чисел SEND и MORE, в сумме дающих число MONEY. Каждая буква означает определенную цифру. Задача состоит в том, чтобы определить, какие это цифры. Так как всего 10 цифр, то в каждой такой задаче может фигурировать не более 10 букв, в этом примере 8. В идеальном случае задача должна иметь единственное решение.

В нашем примере очевидно, что M = 1, так как М — первая цифра либо суммы S + М, либо S + M+1, где S и М — числа, не превосходящие числа 9. Тогда для числа S имеются две возможности:

S = 9 или S = 8,

так как либо S + 1, либо S + 1 + 1 есть двузначное число. Установим сначала, что S не может быть цифрой 8, ибо, если бы S было 8, то должен был бы быть перенос из колонки сотен, что дает

S + M + 1 = 8 + 1 + 1 = 10

при сложении в колонке сотен. Следовательно, О должно было бы быть нулем и наше послание читалось бы так:

  8 Е N D

  1 0 R Е

_________

1 0 N Е Y

Но, исследуя колонку сотен, находим, что обязательно должен быть перенос из колонки десятков (иначе Е + 0 = Е, а не N), и так как Е ≤ 9, то

E + 0 + 1 = 10.

Это вынудило бы нас положить N = 0, но мы уже знаем, что О = 0, поэтому такой случай невозможен, и мы заключаем, что S = 9, и послание теперь читается так:

  9 Е N D

  1 0 R E 

_________

1 0 N Е Y

Так как Е ≠ N, то сложение в колонке сотен приводит к условию E + 1 = N,

и

  9  Е E+1 D

  1  0  R Е

____________

1 0 E+1 Е Y

Сложение в колонке десятков дает либо

E + 1 + R = 10 + E, либо E + 1 + R + 1 = 10 + E.

Первый случай невозможен, так как он дает R = 9, что противоречит тому, что S = 9. Во втором случае R = 8, и послание читается так:

  9  Е Е+1 D

  1  0  8  E

____________

1 0 E+1 Е  Y

И наконец, сумма в колонке единиц такова:

D + E = 10 + Y.

Для трех букв D, E, Y остаются только значения 2, 3, 4, 5, 6, 7. Наибольшая сумма двух различных чисел из них равна 13. Отсюда существует всего две возможности для Y: либо Y = 2, либо Y = 3. Последний случай невозможен, так как при этом D + E = 13, но мы не можем иметь E = 7, так как тогда NE + 1 = 8 = R; также не может быть D = 7, так как тогда E = 6 и N = E + 1 = 7 = D.

Таким образом, Y = 2 и D + E = 12. Из имеющихся цифр 2, 3, 4, 5, 6, 7 единственной парой, в сумме дающей 12, являются 5 и 7. Так как Е ≠ 7, то это означает, что D = 7, Е = 5 и, таким образом, единственное решение нашей задачи следующее:

  9 5 6 7

  1 0 8 5

_________

1 0 6 5 2

Этот процесс довольно сложен, во многих случаях можно получить решение гораздо более простым путем.


Система задач 6.6.

1. Попытайтесь проанализировать следующие при-

меры только что показанным методом:

1. S Е N D

   M O R E

   G O L D

 _________

 M O N E Y


2. H O C U S

   P O C U S

 ___________

 P R E S T O


3. F O R T Y

       T E N

       T E N

   _________

   S I X T Y


4. A D A M

     A N D

     E V E

         A

   _______

   R A F T


5. S E E

   S E E

   S E E

   Y E S

 _______

 E A S Y

Переводы этих ребусов таковы:

1. «Шлите больше золотых монет», 2. «Фокус — Покус — Престо», 3. «Сорок + десять + десять = шестьдесят», 4. «Адам и Ева на плоту», 5. «Смотри, смотри, смотри. Да! Легко».

Если хотите, попробуйте придумать свои ребусы. Если вы знакомы с ЭВМ, то попытайтесь запрограммировать решение таких задач.

ГЛАВА 7

СРАВНЕНИЯ

§ 1. Определение сравнения

Теория чисел имеет свою алгебру, известную, как теория сравнений. Обычная алгебра первоначально развивалась как стенография для операций арифметики. Аналогично, сравнения представляют собой символический язык для делимости, основного понятия теории чисел. Понятие сравнения впервые ввел Гаусс.

Прежде чем мы обратимся к понятию сравнения, сделаем одно замечание о числах, которые будем изучать в этой главе. Мы начали эту книгу, заявив, что будем рассматривать целые положительные числа 1, 2, 3…, и в предыдущих главах мы ограничивались только этими числами и дополнительным числом 0. Но теперь мы достигли стадии, на которой целесообразно расширить наши границы, рассматривая все целые числа:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Приглашение в теорию чисел"

Книги похожие на "Приглашение в теорию чисел" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора О. ОРЕ

О. ОРЕ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "О. ОРЕ - Приглашение в теорию чисел"

Отзывы читателей о книге "Приглашение в теорию чисел", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.