Авторские права

О. ОРЕ - Приглашение в теорию чисел

Здесь можно скачать бесплатно "О. ОРЕ - Приглашение в теорию чисел" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство "Наука" Главная редакция физико-математической литературы, год 1980. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
О. ОРЕ - Приглашение в теорию чисел
Рейтинг:
Название:
Приглашение в теорию чисел
Автор:
Издательство:
"Наука" Главная редакция физико-математической литературы
Год:
1980
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Приглашение в теорию чисел"

Описание и краткое содержание "Приглашение в теорию чисел" читать бесплатно онлайн.



Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.






Любое целое число, которое является произведением двух целых чисел, можно было бы назвать прямоугольным числом. Когда две стороны прямоугольника имеют одну и ту же длину, то такое число является квадратным числом, или квадратом. Некоторые числа нельзя представлять в виде прямоугольных чисел иначе, как тривиальным способом — в виде цепочки точек, лежащих в одном ряду. Например, пять может быть представлено как прямоугольное число лишь единственным способом, взяв одну сторону равной единице, а другую — пяти (рис. 3).


• • • • •

Рис. 3.


Такие числа греки называли простыми числами. Точка, взятая в одном экземпляре, не рассматривалась как число. Число 1 явилось тем кирпичом, из которого строились все остальные числа. Таким образом, 1 не была для них и не считается сейчас простым числом.

Можно было бы рассматривать точки, равномерно заполняющие не только прямоугольники и квадраты, но и другие геометрические фигуры. Последовательные треугольные числа изображены на рис. 4.

Рис. 4.


В общем случае n-е треугольное число задается формулой


Тn = ½ n (n+1), n = 1, 2, 3… (1.4.1)


У этих чисел масса интересных свойств: например, сумма двух последовательных треугольных чисел является квадратом

1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16 и т. д. (1.4.2)

Обобщением треугольных чисел и квадратов явились многоугольные числа. Метод их получения проиллюстрируем на примере пятиугольных чисел. Для этого рассмотрим рис. 5.

Рис. 5.


Глядя на него, легко найти несколько первых пятиугольных чисел,

1, 5, 12, 22, 35. (1.4.3)

Можно показать, что n-е пятиугольное число выражается формулой

pn = ½ (3n2 — n). (1.4.4)

Шестиугольные числа, и вообще k-угольные числа, аналогично определяются с помощью правильного k-угольника, и мы не будем больше тратить времени на их обсуждение. Фигурные числа, особенно треугольные, пользовались большой популярностью при изучении чисел в конце эпохи Возрождения, после того как греческая теория чисел проникла в Западную Европу. И сейчас их можно иногда встретить в статьях по теории чисел.

Проводя анализ такого геометрического представления чисел, можно получить несколько простых соотношений. Остановимся лишь на одном примере. Уже давно было известно, что складывая последовательно нечетные числа, мы все время будем получать квадраты, например,

1 + 3 = 4, 1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16 и т. д.

Чтобы доказать это соотношение, достаточно лишь взглянуть на рис. 6, на котором изображены последовательно вложенные квадраты.

Рис. 6.


Система задач 1.4.

1. Докажите по индукции общую формулу (1.4.1) для треугольных чисел.

2. Докажите формулу (1.4.4) для пятиугольных чисел.

3. Докажите, что произвольное k-угольное число выражается формулой

½ k (n2 - n) — n2 + 2n.

§ 5. Магические квадраты

Если вы играли в «шафлборд»[1], вы можете вспомнить, что девять квадратов, на которых вы размещаете свои фишки, занумерованы числами от 1 до 9, расположенными так, как на рис. 7. Здесь числа в каждом столбце и в каждой строчке, а также в каждой из диагоналей, дают при сложении одно и то же число 15.

Рис. 7.


В общем случае магическим квадратом является расположение чисел от 1 до n2 в виде квадрата так, что числа в каждом столбце, строчке и диагонали дают одинаковую сумму s, называемую магической суммой.

Пример магического квадрата с 42 = 16 числами изображен на рис. 8. Магическая сумма для него равна 34.

Рис. 8.


Для каждого числа n существует только одна магическая сумма s, которую легко найти. Так как сумма чисел в каждом столбце равна s, а столбцов — n, то сумма всех чисел в магическом квадрате равна ns.

Но сумма всех чисел от 1 до n2 равна

1 + 2 +… + n2 = ½ (n2 + 1) n2,

что следует из формулы для суммы n членов арифметической прогрессии. Так как

n  s = ½ (n2 + 1) n2,

то

s = ½ n (n2 + 1). (1.5.1)

Таким образом, если число n задано, то число s определено. Магические квадраты могут быть построены для любого числа n, которое больше 2; читатель легко может убедиться, что их не существует для n = 2.

Во времена средневековья странные свойства этих квадратов считались волшебными и поэтому магические квадраты служили талисманами, защищающими тех, кто их носил, от многих несчастий. Часто воспроизводится магический квадрат, присутствующий на знаменитой гравюре Альбрехта Дюрера «Меланхолия» (она помещена на фронтисписе нашей книги). Этот квадрат воспроизведен с большим увеличением на рис. 9; при этом мы получили также возможность увидеть, как во времена Дюрера изображались цифры. Средние числа в последней строке изображают год, — 1514, в котором, как мы знаем, была создана эта гравюра. Возможно, что Дюрер, положив в основу именно эти числа, нашел остальные методом проб и ошибок. Можно доказать, что при n = 3 имеется лишь один магический квадрат, а именно квадрат, изображенный на рис. 7. Докажем этот факт. Для этого напишем числовой квадрат 3 × 3 в общем виде

x1  y1  z1

xy2  z2

xyz3

и выясним, какими могут быть эти девять чисел.

Рис. 9.

Вначале покажем, что центральное число y2 должно равняться 5. Из формулы (1.5.1) следует, что при n = 3 магическая сумма s равна 15. Просуммируем теперь числа во второй строке, втором столбце и обеих диагоналях. В эту сумму каждое число, кроме числа y2, входит по одному разу; число у2 входит четыре раза, так как оно содержится в каждой из четырех сумм. Поэтому, так как каждая сумма равна s, то

4s = 4 × 15 = 60 =

= x2 + y2 + z2 + y1 + y2 + y3 + x1 + у2 + z3 + z1 + y2 + x3 = Зy2 + x1 + x2 + x3 + y1 + y2 + y3 + z1 + z2 + z3 =

= 3y2 + 1 + 2 +… + 9 = 3y2 + 45.

Следовательно,

Зy2 = 60–45 = 15 и y2 = 5.

В таблице

x1  yz1

x2   5  z2

xy3  z3

число 9 не может стоять в углу, так как, если, например, x1 = 9, то z3 = 1 (потому что s = 15), т. е. мы получили бы таблицу

9  y1  z1

x2  5  z2

xy3  1

Каждое из четырех чисел y1, z1, x2, х3 должно быть меньше шести, так как y1 + z1 = х2 + х3 = 6. Но у нас осталось лишь три числа, меньших шести, а именно: 2, 3 и 4. Таким образом, получилось противоречие. Отсюда мы делаем вывод, что число 9 должно находиться в середине строки или столбца, поэтому наш квадрат может быть записан так:

x1  9  z1

x2  5  z2

x3  1  z3

Число 7 не может быть в одной и той же строке с числом 9, так как тогда сумма чисел в этой строке была бы больше пятнадцати; точно так же число 7 не может быть в одной и той же строке с числом 1, так как тогда оставшееся в этой строке число должно было бы быть также семеркой. Таким образом, 7 не может находиться в углу, и мы можем считать, что наш квадрат имеет следующий вид:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Приглашение в теорию чисел"

Книги похожие на "Приглашение в теорию чисел" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора О. ОРЕ

О. ОРЕ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "О. ОРЕ - Приглашение в теорию чисел"

Отзывы читателей о книге "Приглашение в теорию чисел", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.