» » » » Питер Эткинз - Десять великих идей науки. Как устроен наш мир.


Авторские права

Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Здесь можно скачать бесплатно "Питер Эткинз - Десять великих идей науки. Как устроен наш мир." в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Питер Эткинз - Десять великих идей науки. Как устроен наш мир.
Рейтинг:
Название:
Десять великих идей науки. Как устроен наш мир.
Издательство:
неизвестно
Год:
неизвестен
ISBN:
978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Десять великих идей науки. Как устроен наш мир."

Описание и краткое содержание "Десять великих идей науки. Как устроен наш мир." читать бесплатно онлайн.



Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.






Рис. 8.6. Временная шкала событий в жизни Вселенной. Температура в эру раздувания все еще является предметом спекуляций, и линейную зависимость от времени, изображенную на графике, не следует интерпретировать буквально. После эры великого объединения сильные взаимодействия отделяются от электрослабых; после электрослабой эры слабое и электромагнитное взаимодействие разделяются. Указываемая температура является температурой электромагнитного поля, а люди появляются, когда температура локальной среды становится близкой к 300 К, даже несмотря на то, что температура электромагнитного поля гораздо ниже.

Древние звезды образовались из водорода, но так как они вовлекали водород в процесс слияния ядер, образовались новые элементы. Ядерный синтез, создание элементов, был запущен, и Вселенная постепенно становилась более разнообразной. Образование элементов в очень молодой Вселенной, до того как возникли звезды, называется первичным ядерным синтезом. Он не зашел слишком далеко, главным образом потому, что ядра строились путем последовательного добавления нуклонов к протонам, давая дейтерий (один нейтрон, вцепившийся в протон ногтями сильного взаимодействия), гелий (два протона и два нейтрона в довольно устойчивом положении) и так далее. Однако на этой стадии нет устойчивых ядер с пятью или восемью нуклонами. У этой стадии имеется предел возможностей, потому что более тяжелые ядра не имели возможности образовываться в результате сжатия. Наиболее распространенным элементом, образовавшимся на этой стадии, являлся гелий, который и тогда и теперь составляет 23 процента Вселенной, почти все остальное является водородом. Распространенность гелия может быть предсказана из теории Большого Взрыва, и ее экспериментальное подтверждение дает мощную поддержку этой теории.

Почти всем остальным элементам во Вселенной, для того чтобы увидеть дневной свет, пришлось ждать образования звезд. Здесь не место углубляться в этот раздел ядерной физики; достаточно сказать, что факт свечения звезд, и Солнца в том числе, говорит о том, что элементы все еще производятся (или, по крайней мере, производились около восьми минут назад). Астроном Артур Стенли Эддингтон (1882-1944) был первым, кто предположил, что горючим для звезд является энергия, освобождаемая, когда атомы водорода сталкиваются и сплавляются вместе, образуя гелий.

Звезды являются очень опасными объектами, как можно предполагать, исходя из того, что в этих свирепо раскаленных шарах, подвешенных в небе, происходит неограниченный нуклеосинтез. Они не горят ровно, как каминная растопка, медленно угасая в конце. У них бурная история, в которой ядерные реакции идут в оболочках, погруженных глубоко внутрь звезды, эти оболочки растут, сжимаются, рушатся и разражаются вспышками энергии, которые могут прорывать внешние слои звезды и извергаться в пространство.

Бурная история жизни звезды начинается с облака газа. Стянется облако под действием гравитации в звезду или нет, зависит от множества факторов, включая плотность, температуру и массу. Минимальная масса облака при заданных температуре и плотности, из которого может образоваться звезда, называется массой Джинса, по имени астрофизика Джеймса Джинса (1877-1946), который исследовал и строил теории возникновения звезд. Разреженные облака с низкой плотностью, обычно устойчивые по отношению к гравитационному коллапсу, не образуют звезд. Плотные облака, однако, будут испытывать коллапс, и для типичного облака, состоящего из водорода и гелия, масса Джинса эквивалентна массе примерно семнадцати солнц. Однако, когда облако коллапсирует в себя, его плотность возрастает, масса Джинса уменьшается, и, вместо образования только одной огромной звезды, более мелкие области облака могут сами испытать гравитационный коллапс, так что фрагменты облака образуют скопление более мелких звезд. Потенциальные звезды, имеющие массу, равную одной десятой массы нашего Солнца, являются недостаточно горячими для того, чтобы начались ядерные реакции, являются мертворожденными: они никогда не светят. Потенциальные звезды, имеющие массу, примерно в девяносто раз большую массы Солнца, неустойчивы: они начинают осциллировать и распадаются. Поэтому все звезды имеют массы между этими двумя значениями.

Газ, которому предназначено сформировать звезду — главным образом водород и гелий, — свободно падает к общему центру. Когда атомы падают, они сталкиваются друг с другом, и эти столкновения вызывают повышение температуры. Наступает стадия, когда температура в коллапсирующем облаке становится столь высокой, что ядра сталкиваются достаточно сильно для того, чтобы сплавиться вместе и образовать гелий, а ядра гелия, сталкиваясь друг с другом, образуют более тяжелые элементы. Для звезд примерно на 20 процентов более массивных, чем Солнце, температура может подняться даже выше. Выше, чем примерно 20 миллионов градусов, частицы двигаются так быстро, что протоны могут успешно образовывать ядра с более высокими зарядами, такие как углерод, азот и кислород, и освобождать энергию при объединении.

Звезды, более крупные, чем приблизительно восемь солнц, имеют бурное будущее. Температура в этих гигантах может возрасти до такой степени (примерно до 3 миллиардов градусов), что возникает «кремниевое горение», в котором ядра гелия сливаются с ядрами, близкими к кремнию, и постепенно строят более тяжелые элементы, проходя периодическую таблицу и образуя в конце железо и никель. Эти два элемента имеют самые устойчивые ядра из всех, и никакой дальнейший нуклеосинтез не приводит к высвобождению энергии. На этой стадии звезды имеют структуру, подобную структуре луковицы, в которой тяжелые элементы образуют железное ядро, а более легкие элементы входят в последовательность оболочек вокруг него (рис. 8.7). Продолжительность каждого из этих эпизодов критически зависит от массы звезды. Для звезд в двадцать раз массивнее Солнца эпоха водородного горения длится 10 миллионов лет, затем в глубоком ядре возникает гелиевое горение и продолжается миллион лет. Дальше горючее в ядре прогорает намного быстрее. Так, углеродное горение завершается через 300 лет, кислородное проходит за 200 дней, а на фазу кремниевого горения хватает выходных.

Рис. 8.7 Внутренняя структура типичной звезды с массой около пяти солнц на подходе к фазе красного гиганта с углеродно-кислородным ядром. Для наглядности радиусы внутренних оболочек увеличены относительно поверхности (белая полоска характеризует изменение масштаба).

Температуре в ядре теперь так высока, около 8 миллиардов градусов, что излучаемые фотоны обладают достаточной энергией и достаточно многочисленны, чтобы разорвать железное ядро на протоны и нейтроны, уничтожая всю работу ядерного синтеза, для достижения которого потребовались миллиарды лет. На этом шаге из ядра уходит энергия, и оно внезапно охлаждается. Теперь мало что поддерживает структуру ядра, и оно срывается в коллапс. Внешние части ядра свободно падают внутрь, и скорость сжатия может достигать 70 тысяч километров в секунду. За секунду объем размером с Землю сжимается до размеров Лондона. Это фантастически быстрое сжатие оказывается слишком быстрым для внешних областей звезды, они не могут поспеть за обвалом, и скоро звезда становится полой оболочкой с внешними областями, высоко подвешенными над маленьким сжавшимся ядром.

Коллапсирующее внутреннее ядро сжимается, затем вздрагивает и посылает ударную волну нейтрино сквозь продолжающую падение внешнюю часть ядра. Нейтринная вспышка разогревает внешнюю часть ядра и теряет энергию, создавая больший разброс в тяжелых ядрах, сквозь которые он проходит. При условии, что внешнее ядро не слишком толстое, за 20 миллисекунд после возникновения вспышка уходит к внешним частям звезды, подвешенным большими дугами над ядром, гоня перед собой звездное вещество, наподобие огромного сферического цунами. Когда она достигает поверхности, звезда вспыхивает с яркостью миллиарда солнц, освещая свою галактику как сверхновая типа II[39] (рис. 8.8), и звездное вещество взрывается в космическое пространство.

Рис. 8.8. Остатки сверхновой типа II (остатки в Веле). Эта сверхновая появилась 11 тысяч лет назад, и мы можем наблюдать, как именно вещество — элементы, находившиеся внутри звезды — рассеивается по Вселенной. Вела (Паруса) это яркое созвездие в северной части Млечного Пути; когда-то оно считалось частью созвездия Аргонавтов, кораблем Ясона. Разные типы сверхновых различать очень трудно.

Смерть звезды несет во Вселенную жизнь. Взрыв звезды оставляет после себя сжатое ядро в виде нейтронной звезды, маленького, чрезвычайно плотного и гладкого тела, состоящего из нейтронов, или, если начальная масса звезды превышала массу двадцати пяти солнц, даже в виде черной дыры, области с такой свирепой тягой гравитации, что даже свет не может покинуть ее. Однако гораздо более важной, по крайней мере в первое время, является шрапнель, поскольку этим способом элементы, сваренные и выпеченные в звезде из первичных водорода и гелия, рассеиваются по всей галактике. Эти элементы могут оказаться включенными в звезды нового поколения. Некоторая часть, однако, соберется в пылинки, пылинки в камни, камни в глыбы, а глыбы в планеты. Планеты, которые могут образоваться около гостеприимной звезды, как Земля возле Солнца, богаты теперь строительными блоками жизни, жизни, которая, по крайней мере в одном месте и почти наверняка, в мириадах других оказывается способной к открытию своего собственного грандиозного космоса и малозначительной местной истории (глава 1). Мы являемся порождениями звездного света:[40] из космической ярости медленно возникают наука, искусство, веселье.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Десять великих идей науки. Как устроен наш мир."

Книги похожие на "Десять великих идей науки. Как устроен наш мир." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Питер Эткинз

Питер Эткинз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Питер Эткинз - Десять великих идей науки. Как устроен наш мир."

Отзывы читателей о книге "Десять великих идей науки. Как устроен наш мир.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.