» » » » Питер Эткинз - Десять великих идей науки. Как устроен наш мир.


Авторские права

Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Здесь можно скачать бесплатно "Питер Эткинз - Десять великих идей науки. Как устроен наш мир." в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Питер Эткинз - Десять великих идей науки. Как устроен наш мир.
Рейтинг:
Название:
Десять великих идей науки. Как устроен наш мир.
Издательство:
неизвестно
Год:
неизвестен
ISBN:
978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Десять великих идей науки. Как устроен наш мир."

Описание и краткое содержание "Десять великих идей науки. Как устроен наш мир." читать бесплатно онлайн.



Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.






Эти пять проблем — происхождение расширения, проблема горизонта, проблема плоскости, проблема отсутствия монополей и наличие крупномасштабной структуры — весьма серьезны. Однако теория Большого Взрыва так успешна в других отношениях, что было бы трудно отказаться от нее. Конечно, эксперименты действительно подтверждают, что Вселенная проходила очень горячую фазу и с тех пор расширяется. Ответ должен лежать в событиях, происходивших в самые ранние моменты Большого Взрыва, событиях, предшествовавших тем, что рассматривались до сих пор (но все еще по эту сторону от абсолютного начала). Теорией, принимаемой на сегодняшний день, является теория раздувания (иначе, инфляции).

Раздувание — это необычное расширение. Раздувание — это очень быстрое расширение. Вы могли к этому моменту заметить, что я не слишком легко использую слово «очень», а слово «очень» и подавно. В этом случае я имею в виду расширение со скоростью, превосходящей скорость света. В действительности, я имею в виду гораздо больше, чем это. Не тревожьтесь о том, что нечто происходит быстрее, чем может двигаться свет: в концепции сверхсветового расширения нет никаких особых трудностей, поскольку расширяется сам масштаб пространства; распространение сигнала через это пространство мы не рассматриваем. В сценариях раздувания (их несколько вариантов, каждый построен на некоторой центральной идее) нечто — мы еще вернемся к нему — включается через 10−35 секунды после начала. Затем действие начинается. Каждые следующие 10−35 секунды размер Вселенной более чем удваивается[43] и продолжает более чем удваиваться каждые 10−35 секунды до выключения раздувания примерно через 10−32 секунды, время 100-кратного более-чем-удвоения. Посмотрим, что это значит в более человеческих терминах. Пусть начальный размер равен 1 см. Одно более-чем-удвоение дает нам 2,7 см. Два увеличивают до 7,4 см. Три до 20 см. После десяти достигаем 220 метров. Через двадцать получаем 4852 километра. К пятидесяти имеем 5480 световых лет (вспомним, что прошло 5×10−34 секунды). Вдвое больше более-чем-удвоений объемлют галактику. Немного больше еще — локальную группу галактик. После более чем 100 более-чем-удвоений первоначальный объект вырастает в 1043 раз. В некоторых версиях раздувания расширение даже больше, порядка числа 10, умноженного на самого себя триллион раз, или 101 000 000 000 000. Это огромное, действительно огромное увеличение, происходящее за 10−32 секунды!

Отступим немного назад от этого замечания. Я преднамеренно драматизировал раздувание, говоря на языке человеческих единиц. Теперь, однако, вы увидите, что наилучшим способом было бы представлять его себе в терминах фундаментальных единиц. С этой более фундаментальной точки зрения раздувание происходило неторопливо. Сначала ему потребовалось 10−35 секунд, чтобы начаться. Этот начальный период в действительности, конечно, занял очень большое время, поскольку он соответствует ста миллионам планковских тиканий (в трех годах содержится около ста миллионов секунд, поэтому, чтобы легче воспринять это время, представьте себе три года). У того, что готовилось включиться, было много времени, чтобы собраться с силами. Затем период более-чем-удвоения: на него ушло еще сто миллионов неторопливых тиканий — еще «три года» — на каждый эпизод, что едва ли безумно много.

Давайте посмотрим, как раздувание решает проблемы модели Большого Взрыва. Проблема горизонта решена, потому что все точки, которые сегодня разнесены слишком далеко для того, чтобы иметь возможность контакта на скорости света, на самом деле были в начале очень близки и имели много времени для общения друг с другом. Другими словами, наша современная видимая Вселенная была однажды вся упакована в столь малую область, что сигналу хватало времени пройти ее насквозь и сделать однородной. Проблема плоскости решена, потому что раздувание уменьшает любую первоначальную кривизну, в точности так, как разглаживается поверхность надуваемого сморщенного баллона. Проблема монополей решена, поскольку даже если монополи первоначально присутствовали, теперь в нашей области Вселенной мог бы быть применен лишь один, и неудивительно, что его еще не поймали. Причина в том, что находящееся здесь вещество формировалось после раздувания, в то время как монополи формировались до него и были отдуты далеко. И, наконец, следует подчеркнуть, что, если теория раздувания верна, то Вселенная намного больше, чем мы когда-либо себе представляли, и все, что мы можем видеть — что мы когда-либо сможем увидеть, — есть только очень малая доля всего, что есть. Унижение тоже раздулось, и еще больше будет раздуваться впредь.

Все еще остается вопрос: как началось раздувание? Мы также получили новую проблему: как оно закончилось? Почему оно выдохлось через 10−32 секунды? Идею раздувания впервые ввел датский астроном и математик Биллем де Ситтер (1872-34) в 1917 г. Он понял, что если вакуум обладает энергией, то должно возникать раздувание. То, что вакуум обладает энергией, не должно нас слишком беспокоить: то, что мы считаем «вакуумом» есть нечто произвольное, и о пустом пространстве не следует думать как об абсолютном ничто. Мы предположим, что вакуум наполнен полем, которое назовем скалярным полем. Очень примитивный способ составить представление о скалярном поле — это вообразить, что Вселенная связана с электродами батареи и повсюду находится под однородным напряжением, ну, скажем, в 12 вольт. Это напряжение невозможно было бы обнаружить ни в каком эксперименте, который мы могли бы проделать, и мы могли бы назвать это ложным вакуумом. Мы можем вообразить, что батарею отсоединяют, и Вселенная разряжается, причем 12-вольтный вакуум превращается в истинный вакуум с нулевым напряжением. Эти две версии вакуума для нас будут выглядеть одинаковыми, но они различны.

Так как эти идеи являются довольно странными, будет полезно взглянуть на них в более широком контексте. Во-первых, примечательным фактом является то, что химики до поздней стадии развития их науки не считали воздух подходящим предметом для изучения, ибо как нечто несубстанциональное может иметь химические свойства? То же самое мы можем думать о вакууме. История науки, похоже, следует по пути, на котором мы узнаем все больше и больше о все меньшем и меньшем; воздух уже седая древность, а в центре внимания физиков теперь множество разных вакуумов, и можно предположить, что, когда они подойдут к построению теорий об подлинном моменте начала Вселенной, им придется изучать уже совсем абсолютное ничто. Может быть, мы откроем, что абсолютное ничто имеет свойства и может принимать различные формы![44]

Нам следует остановиться на вопросе, как наличие энергии у вакуума приводит к быстрому раздуванию. Этот механизм представляет собой вид положительной обратной связи. Во-первых, чем больше расширяется Вселенная, тем больше в ней образуется вакуума, и если вакуум обладает энергией, то полная энергия Вселенной возрастает. Далее, решения Фридмана показывают, что скорость расширения Вселенной растет вместе с энергией, которую она содержит, поэтому скорость расширения возрастает вместе с расширением. Поскольку скорость расширения пропорциональна масштабу Вселенной, этот масштаб возрастает экспоненциально со временем. Экспоненциальные изменения нарастают очень быстро, поэтому все большая скорость раздувания присутствует, пока присутствует скалярное поле (рис. 8.9).

Рис. 8.9. Раздувающаяся Вселенная. В короткий период времени после начала масштаб Вселенной начинает возрастать с колоссальной скоростью, более чем удваивая свой радиус каждые 10−35 секунды. Эра раздувания выглядит экспоненциальным ростом размера, но заканчивается за 10−32 секунды. После этого расширение проходит гораздо более неторопливо и соответствует одному из сценариев, показанных на рис. 8.4.

Однако в модели де Ситтера есть проблема отсутствия механизма прекращения раздувания. Раздувание продолжалось бы вечно, и в результате все вещество и излучение Вселенной быстро размазались бы до нуля, оставляя Вселенную пустой. Это противоречит опыту, поэтому его модель раздувания была отброшена и по большей части забыта. Однако в конце двадцатого века концепция раздувания возродилась на двух изолированных островках интеллектуальной активности, каждый за горизонтом коммуникации другого. Один центр активности был в тогдашнем Советском Союзе, где в 1979 г. Алексей Старобинский использовал идеи из общей теории относительности для развития более ранней идеи, которую другой русский, Эраст Глинер, предложил в 1965 г. За горизонтом, в Соединенных Штатах, Алан Гут рассматривал проблему нежелательного возникновения магнитных монополей как проблему физики частиц, и в 1981 г. пришел к похожей идее.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Десять великих идей науки. Как устроен наш мир."

Книги похожие на "Десять великих идей науки. Как устроен наш мир." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Питер Эткинз

Питер Эткинз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Питер Эткинз - Десять великих идей науки. Как устроен наш мир."

Отзывы читателей о книге "Десять великих идей науки. Как устроен наш мир.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.