» » » » Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании


Авторские права

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь можно купить и скачать "Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
Рейтинг:
Название:
Maple 9.5/10 в математике, физике и образовании
Издательство:
неизвестно
Год:
2006
ISBN:
5-98003-258-4
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Maple 9.5/10 в математике, физике и образовании"

Описание и краткое содержание "Maple 9.5/10 в математике, физике и образовании" читать бесплатно онлайн.



Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.






Обратите внимание на то, что в предпоследнем примере Maple отказалась вычислить «очевидное» значение выражения, но сделала это после придания х статуса предполагаемой переменной с только положительными значения.

3.2.13. Применение элементарных функция для моделирования сигналов

Системы компьютерной математики часто используются для моделирования сигналов и устройств их обработки и преобразования (см. пример в разделе 3.2.5). Рисунок 3.6 показывает построение нескольких функций, полученных с помощью комбинаций элементарных функций, включая тригонометрические функции. Такие комбинации позволяют получать периодические функции, моделирующие сигналы стандартного вида: в виде напряжения на выходе двухполупериодного выпрямителя, симметричных прямоугольных колебаний (меандр), пилообразных и треугольных импульсов, треугольных импульсов со скругленной вершиной.

Рис. 3.6. Примеры моделирования сигналов с помощью комбинаций элементарных функций


В этом рисунке запись axes=NONE убирает координатные оси. Обратите внимание, что смещение графиков отдельных функций вниз с целью устранения их наложения достигнуто просто прибавлением к значению каждой функции некоторой константы.

Приведенные выше сигналы нередко можно формировать, используя функции с условиями — например, функцию signum. Однако достоинство моделирования сигналов с помощью только элементарных функций заключается в том, что такие сигналы нередко могут обрабатываться аналитически, тогда как для функций с условиями это возможно далеко не всегда.

3.2.14. Выбор экспоненциальных функций для приближения сложных зависимостей

В природе многие зависимости имеют экспоненциальное нарастание или спад. Это характерно для апериодических и релаксационных процессов, например, таких как спад радиоактивности. Да и многие колебательные процессы имеют экспоненциальное нарастание или спад амплитуды колебаний. Кроме того, такие зависимости характерны для ряда характеристик самых разнообразных устройств и систем. Это делает целесообразным рассмотрение и визуализацию наиболее важных из экспоненциальных функций.

На рис. 3.7 показано начало документа на котором заданы три экспоненциальные функции и построены семейства их графиков. Представление графиков в виде семейства, а не поодиночке, позволяет наглядно представить характер изменения вида функций, что зачастую уже достаточно для выбора той или иной функции в качестве приближения (аппроксимации) некоторой сложной зависимости. После выбора зависимости используя методы регрессионного анализа можно подобрать параметры выбранной функции по методу наименьших квадратов.

Рис. 3.7. Начало документа с тремя экспоненциальными зависимостями


Первая из представленных функций описывает зависимости, характерные для идеального диода или р-n-перехода. Две другие зависимости имеют характерные падающие участки, которые присуши, например, вольт-амперным характеристикам «лямбда»-диодов и транзисторов (первые характеризуются одной кривой, другие семейством кривых). Последняя зависимость задана функцией пользователя с тремя параметрами x, а и b.

Еще три зависимости, представленные на рис. 3.8 также весьма напоминают характерные для ряда систем и устройств характеристики. Первая зависимость очень похожа на нормированные резонансные кривые колебательных контуров и иных резонаторов. Другая зависимость позволяет моделировать нелинейные характеристики усилителей. Ее замечательные свойства — симметрия и возможность изменения плавности перехода от одного состояния (0) к другому (1). А третья зависимость характеризует сдвиг по горизонтали некоторой передаточной зависимости. Она также очень напоминает кривые гистерезиса магнитных материалов.

Рис. 3.8. Часть документа с тремя дополнительными экспоненциальными зависимостями


Следующая тройка зависимостей представлена на рис. 3.9. Эти зависимости напоминают ранее описанные, но с некоторыми индивидуальными особенностями. Например, средняя зависимость дает спад, а не нарастание значения «выхода» при нарастании значения переменной х. Семейство зависимостей в конце рис 3.9 характерно плавным переходом от симметричной зависимости к явно несимметричной, имеющей быстрое нарастание и относительно медленный спад. Такой характер нередко имеет выходной сигнал усилителя, возбуждаемого перепадом напряжения.

Рис. 3.9. Часть документа с еще тремя экспоненциальными зависимостями


Три последние зависимости (рис. 3.10) прекрасно подходят для описания вольт-амперных характеристик ряда электронных приборов. Первые две из них напоминают семейства вольт-амперных характеристики полевых транзисторов и электронных ламп. Верхняя соответствует приборам с постоянной крутизной, на что указывает равное расстояние между кривыми. А вторая напоминает семейство вольт-амперных характеристик полевого транзистора с нарастающей при больших токах крутизной.

Рис. 3.10. Конец документа с началом на рис. 3.7


Последняя зависимость неплохо подходит для приближения N-образной вольт-амперной характеристики туннельного диода. Это довольно старый, но хорошо известный прибор, который применяется в усилителях и генераторах высокочастотных и сверхвысокочастотных колебаний.

3.2.15. Применение функций с элементами сравнения

В алгоритме вычисления ряда функций заложено сравнение результата с некоторым опорным значением. К таким функциям с элементами сравнения относятся: abs — абсолютное значение числа; ceil — наименьшее целое, большее или равное аргументу; floor — наибольшее целое, меньшее или равное аргументу; frac — дробная часть числа; trunc — целое, округленное в направлении нуля; round — округленное значение числа; signum(х) — знак х (-1 при х<0, 0 при х=0 и +1 при х>0).

Для комплексного аргумента х эти функции определяются следующим образом:

• trunc(x) = trunc(Re(x)) + rtrunc(Im(x));

• round(x) = round(Re(x)) + I*round(Im(x));

• frac(x) = frac(Re(x)) + I*frac(Im(x)).

Для введения определения значения floor(x) от комплексного аргумента прежде всего запишем а=Re(x)-floor(Re(x)) и b=Im(x)-floor(Im(x)). Тогда floor(x)=floor(Re(x))+I*floor(Im(x))+X, где

Наконец, функция ceil для комплексного аргумента определяется следующим образом:

ceil(x) = -floor(-х)

Примеры вычисления выражений с данными функциями представлены ниже (файл calcfun):

> [ceil(Pi), trunc(Pi), floor(Pi), frac(Pi), round(Pi)];

[4, 3, 3, π, -3, 3]

> frac(evalf(Pi));

.141592654

> [ceil(-Pi),trunc(-Pi),floor(-Pi),round(-Pi)];

[-3, -3, -4, -3]

> trunc(2.6+3.4*I);

2+3I

> [signum(-Pi),signum(0),signum(Pi)];

[-1,0,1]

Хотя функции этой группы достаточно просты, их нельзя относить к числу элементарных функций. Нередко их применение исключает возможность проведения символьных преобразований или дает их существенное усложнение.

3.2.16. Работа с функциями комплексного аргумента

Для комплексных чисел и данных, помимо упомянутых в предшествующем разделе, определен следующий ряд базовых функций: argument — аргумент комплексного числа; conjugate — комплексно-сопряженное число; Im — мнимая часть комплексного числа; Re — действительная часть комплексного числа; polar — полярное представление комплексного числа (библиотечная функция). Примеры вычисления для этих функций (файл calcfun):

> z:=2+3*I;

Z:=2 + 3I

> [Re(z),Im(z),abs(z)];

> [argument(z),conjugate(z)];

> readlib(polar);

proc(r::algebraic, th::algebraic) ... end proc

> polar(z);

> polar(-3.,Pi/2);

В некоторых случаях полезна визуализация операций с комплексными числами. Для этого удобен пакет расширения plots, который позволяет представлять комплексные числа в виде стрелок на комплексной плоскости. Например, для иллюстрации операции умножения двух комплексных чисел

можно использовать следующие графические построения (файл complpot):

> with(plottools):

l1 := arrow([0,0], [1,2], .1, .3, .1, color=green):

l1a := arc([0,0],1.5,0..arctan(2),color=green):

> l2 := arrow([0,0], [1,-8], .1, .3, .1, color=green):

l2a := arc([0,0],.75,0..arctan(.8),color=green):

> l3 := arrow([0,0], [-.6,2.8], .1, .3, .1, color=black):

l3a := arc([0,0],2.5,0..arctan(2.8,-.6),color=black):

> plots[display](l1,l2,l3,l1a,l2a,l3a, axes=normal,view=[-3..3,0..3],scaling=constrained);

Они создают график (рис. 3.11) наглядно иллюстрирующий операцию перемножения двух комплексных чисел, представленных своими радиус-векторами.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Maple 9.5/10 в математике, физике и образовании"

Книги похожие на "Maple 9.5/10 в математике, физике и образовании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Дьяконов

Владимир Дьяконов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании"

Отзывы читателей о книге "Maple 9.5/10 в математике, физике и образовании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.