Авторские права

А Гасанов - Учебник по ТРИЗ

Здесь можно скачать бесплатно "А Гасанов - Учебник по ТРИЗ" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Учебник по ТРИЗ
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Учебник по ТРИЗ"

Описание и краткое содержание "Учебник по ТРИЗ" читать бесплатно онлайн.



В пособии хорошо описывается теория решения изобретательских задач и рассматриваются её инженерные приложения в качестве примеров. Последняя глава книги посвящена идеям и жизни создателя ТРИЗ — Г. С. Альтшуллера (писателя-фантаста Генриха Альтова).

Сетевая, неполная версия учебника.






Если объект уже как-то обрабатывается другой системой, то можно возложить выполнение требуемых функций на существующую систему. Сама постановка вопроса акцентирует поиск этих резервов, что в большом числе случаев приводит к возможности существенно уменьшить требования к инструменту, средствам обработки, т. е. произвести переформулирование проблемы. Концентрируя внимание на объекте обработки, мы рассматриваем его не отвлечённо, а в реальных условиях, в динамике.

Пример 3.3. Для крепления крышек различных химических аппаратов (теплообменников, реакторов и т. п.), применяют шпильки — металлические стержни с резьбой по обоим концам. На аппарат, работающий под большим давлением, может потребоваться до 200 шпилек. Каждая шпилька выполнена из стали, имеет диаметр в 50–70 мм, длину до 400 мм.

Все они должны иметь клеймо — на клейме указывается номер аппарата. Клеймо наносится ударом молотка по остро заточенной форме, приложенной к торцу шпильки. Работа трудоемкая, делать ее надо сразу после изготовления шпильки. Необходимо дать предложения по совершенствованию процесса клеймения.

В исходной постановке задачи было необходимо «механизировать процесс клеймения шпилек». Сформулировав требование: «шпилька сама клеймится», мы задаем рамки системы, в которой будет происходить данная операция. Эта формулировка является эвристической подсказкой, позволяющей локализовать область, в которой мы будем искать средства выполнения нужной нам операции. Поэтому методически верно будет уточнить ее. Необходимо раскрыть смысл термина «клеймится». Клеймение в рамках данной нам технологии осуществляют ударом молотка с клеймом на бойке. Т. е. клейму придают определенную кинетическую энергию, которая при соударении со шпилькой превращается в деформацию металла. Следовательно, задача рабочего или механического пресса — придать энергию, обеспечить соударение.

Теперь требование может звучать так: «шпилька сама накапливает энергию (разгоняется) и ударяет по клейму». Можем ли мы представить себе эту картину? Конечно, это сделать намного проще, чем в первоначальном варианте. Шпилька может сама разогнаться, если ее бросить вниз. Упасть точно на клеймо — задача более трудная. Необходимо организовать процесс падения, он должен происходить в каких-то направляющих. А как поднять шпильку на высоту, с которой она будет падать? Это делать не надо, так как шпилька после обработки на станке уже находится на определенной высоте.

Итак, все или почти все может происходить «само собой». В данной ситуации шпилька — это металлический стержень, намного более массивный, чем молоток, с помощью которого производится клеймение. Но для того, чтобы заставить именно шпильку самостоятельно выполнять требуемую работу, пришлось использовать понятие идеальности. Все должно происходить само собой, без затрат энергии и материалов. Обслуживающей, обрабатывающей системы быть не должно, а результат должен получаться.

Пример 3.4. Знаменитое Месояхское месторождение природного газа, многие годы питавшее энергией Норильск с его мощным горнометаллургическим комбинатом, со временем потеряло силу: упало давление в подземных пластах. Скважины пришлось законсервировать, хотя по подсчетам специалистов в недрах осталось еще не меньше половины запасов газа. Оставлять в недрах такое богатство — дорого, и откачивать газ специальными насосами невыгодно — тоже дорого.

Модель системы будет иметь вид: «газ сам выходит из недр». Еще более точно «газ сам откачивает себя из недр». Здесь может быть предложено откачивать газ, вращая насосы двигателями, работающими на том же газе. Но это, как мы уже выяснили, дорого. Задача была решена разработчиками, сумевшими использовать для откачки газа энергию газовых потоков другого месторождения. Газоносные пласты Месояха подсоединили через эжекторную станцию к трубопроводу, по которому с большой скоростью идёт газ Соленинского месторождения. Этот скоростной поток и служит откачивающей средой. Таким образом, удается извлекать ежегодно сотни миллионов кубометров газа.

Пример 3.5. Известному создателю куполов Р. В. Фуллеру принадлежит высказывание: «Если вы хотите установить степень совершенства здания, взвесьте его». Действительно, при прочих равных показателях более легкое здание предпочтительно — на него пошло меньше материала. Стены, элементы перекрытий и т. п. нужны нам не сами по себе, а как носители определенных функций. И чем меньше затрат необходимо на реализацию этих функций, тем лучше. История архитектуры, градостроительства, показывает нам, как неуклонно повышается степень «невесомости» зданий. Рассмотрим в качество примера элемент конструкций, во все времена являвшимся образцом наивысшего уровня архитектурного искусства и инженерных знаний — сферический купол.

Один из наиболее древних дошедших до нас значительных куполов перекрывает Римский Пантеон, созданный еще во времена античности. Пролет купола 43,3 метра, толщина в верхней части 1,6 м, в районе опор 2,5 м, средний вес одного квадратного метра порядка 8000 кг. Общий вес купола составляет 10 000 тонн. Рекордные показатели Пантеона по диаметру перекрываемой без промежуточных опор площади продержались 18 столетий. Снизить удельный вес купола и увеличить его пролет позволил только переход к новым материалам. Вот краткая летопись борьбы за «невесомость куполов». Рекорд Римского Пантеона был перекрыт только в начале двадцатого века. Зал «Столетия» в Польше имел диаметр 47 метров. Вес купола при этом снизился в полтора раза. В 1930 году в Лейпциге был построен купол над рынком. Он покрывал основание диаметром 76 метров. Использование металла высокого качества позволило снизить вес купола до двух тысяч тонн. Вес одного квадратного метра составил 476 килограмм. В 1956 году в одном из университетов США была построена аудитория с куполом, имеющим диаметр проекции в 91,5 метра. Здесь уже использовался алюминий, и это дало возможность вновь резко снизить вес конструкции — до 93 тонн. Один квадратный метр теперь весит 22,6 кг. Наконец, в 1984 году в СССР был построен стенд для испытания опор и линий электропередач. Диаметр перекрываемой площади составлял 220 метров, а весил купол всего 152 тонны!

В 400 раз снизился удельный вес одного метра поверхности. И это при том, что площадь, покрываемая куполом, выросла в тридцать раз.

В основном прогресс в строительстве куполов зависел от появления новых материалов. Материалы становились более «идеальными», они выполняли требуемые функции все более компактными средствами и позволяли создавать все более легкие конструкции.

Принцип повышения идеальности широко используется и в бизнесе. Многие предприятия обеспечивают снижение себестоимости продукции с помощью принципа «Потребитель сам…». Интересные примеры этого приводит Эдвин Тоффлер в книге «Третья волна».

Пример 3.6. «В 1956 году Американская телефонная и телеграфная компания, исследуя запросы в области коммуникации, начала вводить новую электронную технологию, которая позволила абонентам самостоятельно звонить на дальние расстояния. Сегодня стало возможным осуществлять прямой набор во многие заокеанские страны. Набирая соответствующий номер, потребитель выполняет задачу, прежде возлагавшуюся на оператора.

В 1973–1974 годах из-за арабского эмбарго на нефть цены на бензин поднялись. Крупнейшие нефтяные компании получили огромную прибыль, но местные бензозаправочные станции вынуждены были отчаянно бороться за экономическое выживание. Желая снизить цену, многие владельцы бензоколонок ввели самообслуживание. Поначалу это казалось странным. Газеты печатали забавные истории о водителях, которые пытались вставить шланг в радиатор. Однако вскоре потребитель, лично заправлявший свою машину, уже никого не удивлял…

В тот же период появились электронные банкоматы, которые не только упразднили понятие „часов работы“ банка, но также значительно сократили число кассиров, предоставив клиенту осуществлять операции самому, прежде выполнявшиеся банковскими служащими.

То, что клиент самостоятельно выполняет часть работы, не так уж ново — экономисты называют это „экстернализацией стоимости труда“. На этом принципе построены все супермаркеты. Улыбающегося продавца, знавшего ассортимент и приносившего вам товар, заменила тележка для покупок, которую вы сами катите перед собой…

Благодаря совершенствованию техники стоимость междугородних телефонных переговоров снизилась и это создает условия для развития в будущем системы ремонта, при котором владелец бытовой техники сможет, глядя на экран своего телевизора и слушая советы мастера, сам починить свою технику.

Еще 10 лет назад в Соединенных Штатах непрофессионалам продавалось только 30 % электроинструментов, остальные 70 % покупали плотники и другие ремесленники. Менее чем за 10 лет эти цифры поменялись местами: сегодня только 30 % инструментов покупают профессионалы, а 70 % — потребители, которые все чаще следуют призыву „сделай сам“.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Учебник по ТРИЗ"

Книги похожие на "Учебник по ТРИЗ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора А Гасанов

А Гасанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "А Гасанов - Учебник по ТРИЗ"

Отзывы читателей о книге "Учебник по ТРИЗ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.