» » » Лев Ландау - Физика для всех. Молекулы


Авторские права

Лев Ландау - Физика для всех. Молекулы

Здесь можно скачать бесплатно "Лев Ландау - Физика для всех. Молекулы" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лев Ландау - Физика для всех. Молекулы
Рейтинг:
Название:
Физика для всех. Молекулы
Автор:
Издательство:
Наука
Жанр:
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Физика для всех. Молекулы"

Описание и краткое содержание "Физика для всех. Молекулы" читать бесплатно онлайн.



Во второй из четырех книг 'Физики для всех' рассказано о строении вещества, о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их свойства. Читатель знакомится с различными фазовыми состояниями вещества, со структурой и свойствами жидких и твердых растворов, структурой кристаллов и молекул, с основными законами термодинамики.






Скорость ухода атмосферы необычайно сильно зависит от гравитационной энергии γ Mm/r. Если средняя кинетическая энергия молекулы во много раз меньше гравитационной энергии, то отрыв молекул практически невозможен. На поверхности Луны гравитационная энергия в 20 раз меньше, что дает для энергии "убегания" молекулы кислорода значение 1,15*10-12 эрг. Это значение превышает величину средней кинетической энергии молекулы всего лишь в 20-25 раз. Доля молекул, способных оторваться от Луны, равна 10-17. Это уже совсем не то, что 10-300, и подсчет показывает, что воздух будет довольно быстро уходить с Луны в межпланетное пространство. Неудивительно, что на Луне нет атмосферы.

Тепловое расширение

Если нагреть тело, то движение атомов (молекул) будет более интенсивным. Они станут расталкивать друг друга и займут больше места. Этим и объясняется хорошо известный факт: при нагревании твердые, жидкие и газообразные тела расширяются.

О тепловом расширении газов долго говорить не приходится: ведь пропорциональность температуры объему газа была положена в основу нашей температурной шкалы.

Из формулы V = V0/273 *Т мы видим, что объем газа при постоянном давлении возрастает при нагревании на 10С на 1/273 часть (т. е. на 0,0037) его объема при 0°С (это положение иногда называют законом Гей-Люссака).

В обычных условиях, т, е. при комнатной температуре и нормальном атмосферном давлении, расширение большинства жидкостей раза в два-три меньше расширения газов.

Мы уже не раз говорили о своеобразии расширения воды. При нагревании от 0 до 4°С объем воды уменьшается с нагреванием. Эта особенность в расширении воды играет колоссальную роль в жизни на Земле. Осенью по мере охлаждения воды верхние остывшие слои становятся плотнее и погружаются на дно. На их место снизу поступает более теплая вода. Но такое перемешивание происходит только до тех пор, пока температура воды не понизится до 4°С. При дальнейшем падении температуры верхние слои уже не будут сжиматься, значит, не будут становиться тяжелее и не станут опускаться на дно. Начиная с этой температуры, верхний слой, постепенно охлаждаясь доходит до нуля градусов и замерзает.

Только эта особенность воды и препятствует промерзанию рек до дна. Если бы вода вдруг потеряла свою замечательную особенность, даже при скромной фантазии легко представить себе бедственные последствия этого.

Тепловое расширение твердых тел существенно меньше, чем тепловое расширение жидкостей. Оно в сотни и тысячи раз меньше расширения газов.

Во многих случаях тепловое расширение является досадной помехой. Так, изменение размеров движущихся частей часового механизма с переменой температуры привело бы к изменению хода часов, если бы для этих тонких деталей не применялся особый сплав-инвар (инвариантный в переводе означает неизменный, отсюда и название "инвар"). Инвар - сталь с большим содержанием никеля - широко применяется в приборостроении. Стержень из инвара удлиняется лишь на одну миллионную долю своей длины при изменении температуры на 1°С.

Ничтожное, казалось бы, тепловое расширение твердых тел может привести к серьезным последствиям. Дело в том, что нелегко мешать тепловому расширению твердых тел из-за их малой сжимаемости.

При нагревании на 1°С стального стержня его длина возрастает всего на одну стотысячную, т. е. на незаметную глазом величину. Однако, чтобы воспрепятствовать расширению и сжать стержень на одну стотысячную, нужна сила в 20 кгс на 1 см2. И это только для того, чтобы уничтожить действие повышения температуры всего на 10С!

Распирающие силы, возникающие из-за теплового расширения, могут привести к поломкам и катастрофам, если с ними не считаться. Так, чтобы избежать действия этих сил, рельсы железнодорожного полотна укладывают с зазорами. Об этих силах приходится помнить при обращении со стеклянной посудой, которая легко трескается при неравномерном нагревании. В лабораторной практике поэтому пользуются лишенной этого недостатка посудой из кварцевого стекла (плавленый кварц - окись кремния, находящаяся в аморфном состоянии). При одном и том же нагреве медный брусок удлинится на миллиметр, а такой же брусок кварцевого стекла изменит свою длину на незаметную глазом величину 30-40 мкм. Расширение кварца настолько ничтожно, что кварцевый сосуд можно нагреть на несколько сот градусов, а потом без опасений бросить его в холодную воду.

Теплоемкость

Внутренняя энергия тела, разумеется, зависит от температуры. Чем больше надо нагреть тело, тем больше требуется энергии. На нагрев от Т1 до Т2 к телу требуется подвести в виде тепла энергию Q, равную

Здесь С - коэффициент пропорциональности, который называется теплоемкостью тела. Из формулы следует определение Понятия теплоемкости: С есть количество тепла, необходимое для повышения температуры на 1°С. Теплоемкость и сама зависит от температуры: нагрев от 0 до 10С, или от 100 до 1010С, требует несколько различных количеств тепла.

Величины С относят обычно к единице массы и называют удельными теплоемкостями. Тогда их обозначают строчными буквами с.

Количество тепла, идущее на нагревание тела массы m, запишется формулой

Q = mc(T2-T1).

Мы в дальнейшем будем пользоваться понятием удельной теплоемкости, но для краткости говорить о теплоемкости тел. Дополнительным ориентиром всегда будет размерность величины.

Значения теплоемкостей колеблются в довольно широких пределах. Разумеется, теплоемкость воды в калориях на градус по определению равна 1.

Большинство тел имеет теплоемкость меньше, чем у воды. Так, у большинства масел, спиртов и других жидкостей теплоемкости близки к 0,5 кал/(г*К). Кварц, стекло, песок имеют теплоемкость порядка 0,2. Теплоемкость железа и меди-около О,1 кал/(г*К). А вот примеры теплоемкостей некоторых газов: водород - 3,4 кал/(г*К), воздух - 0,24 кал/(г*К).

Теплоемкости всех тел, как правило, уменьшаются с падением температуры и при температурах, близких к. абсолютному нулю, принимают у большинства тел ничтожные значения. Так, теплоемкость меди при температуре 20 К равна всего 0,0035; это в двадцать четыре раза меньше, чем при комнатной температуре.

Знание теплоемкостей может пригодиться для решения различных задач о распределении тепла между телами.

Различие между теплоемкостями воды и почвы является одной из причин, определяющих разницу между морским и континентальным климатом. Обладая примерно в пять раз большей теплоемкостью, чем почва, вода медленно нагревается и так же медленно остывает.

Летом вода в приморских районах, нагреваясь медленнее чем суша, охлаждает воздух, а зимой теплое море постепенно остывает, отдавая тепло воздуху и смягчая мороз. Нетрудно подсчитать, что 1 м3 морской воды, охлаждаясь на 1°С, нагреет на 1°С 3000 м3 воздуха. Поэтому в приморских районах колебания в температуре и разница между температурой зимы и лета менее значительны, чем в континентальных.

Теплопроводность

Каждый предмет может служить "мостиком", по которому перейдет тепло от тела более нагретого к телу менее нагретому.

Таким мостиком является, например, чайная ложка, опущенная в стакан с горячим чаем. Металлические предметы очень хорошо проводят тепло. Конец ложки в стакане становится теплым уже через секунду.

Если нужно перемешивать какую-либо горячую смесь, то ручку у мешалки надо сделать из дерева или пластмассы. Эти твердые тела проводят тепло в 1000 раз хуже, чем металлы. Мы говорим "проводят тепло", но с таким же успехом можно было бы сказать "проводят холод". Конечно, свойства тела не изменяются от того, в какую сторону идет по нему поток тепла. В морозные дни мы остерегаемся па улице притрагиваться голой рукой к металлу, но без опаски беремся за деревянную ручку.

К плохим проводникам тепла - их также называют теплоизоляторами - относятся дерево, кирпич, стекло, пластмассы. Из этих материалов делают стены домов, печей и холодильников.

К хорошим проводникам относятся все металлы. Наилучшими проводниками являются медь и серебро - они проводят тепло в два раза лучше, чем железо.

Конечно, "мостиком" для перехода тепла может служить не только твердое тело. Жидкости тоже проводят тепло, но. много хуже, чем металлы. По теплопроводности металлы превосходят твердые и жидкие неметаллические тела в сотни раз.

Чтобы показать плохую теплопроводность воды, делают такой опыт. В пробирке с водой закрепляют на дне кусочек льда, а верх пробирки подогревают на газовой горелке - вода начинает кипеть, а лед еще и не думает таять. Если бы пробирка была без воды и из металла, то кусочек льда начал бы таять почти сразу же. Вода проводит тепло примерно в двести раз хуже, чем медь.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Физика для всех. Молекулы"

Книги похожие на "Физика для всех. Молекулы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лев Ландау

Лев Ландау - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лев Ландау - Физика для всех. Молекулы"

Отзывы читателей о книге "Физика для всех. Молекулы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.