» » » » Георг Вильгельм Фридрих Гегель - Учение о бытии


Авторские права

Георг Вильгельм Фридрих Гегель - Учение о бытии

Здесь можно скачать бесплатно "Георг Вильгельм Фридрих Гегель - Учение о бытии" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Типография М.М. Стасюлевича, год 1916. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Георг Вильгельм Фридрих Гегель - Учение о бытии
Рейтинг:
Название:
Учение о бытии
Издательство:
Типография М.М. Стасюлевича
Жанр:
Год:
1916
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Учение о бытии"

Описание и краткое содержание "Учение о бытии" читать бесплатно онлайн.



К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)


Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:

1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);

1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).


Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:

1916 г.: Предисловие к русскому переводу, стр. VII–XXII;

1929 г.: От издательства, стр. VII–XI.


В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.


Особенности электронного издания:

1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).

2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.

3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.

4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).

5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).

6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).

7. Греческие слова и выражения приводятся без диакритических знаков.

8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).






Примечание 2-е

Цель дифференциального исчисления, выведенная из его приложения

В предыдущем примечании рассмотрены отчасти определенность понятия бесконечно малого, находящего употребление в дифференциальном исчислении, отчасти основания его введения в это исчисление; то и другое суть отвлеченные и потому легкие определения; но так называемое приложение представляет более трудностей, равно как более интересных сторон; элементы этой конкретной стороны должны составить предмет настоящего примечания. Весь метод дифференциального исчисления сводится к положению dxn=nxn-1dx или иначе (f(x+i)—fx)/i=P, т. е. равно коэффициенту первого члена двучлена x+d, x+i, развитого по степеням dx или i. Далее нечему учиться новому; вывод ближайших форм дифференциала произведения, степени и т. д. вытекает отсюда механически; в короткое время, в {185}каких-нибудь полчаса — с нахождением дифференциалов дано также и обратное, нахождение по ним первоначальной функции, интегрирование — можно освоиться со всею теориею. Задерживает на ней долее лишь стремление усмотреть, сделать понятным, каким образом после того, как одна сторона задачи, нахождение этого коэффициента решена так легко аналитическим, т. е. совершенно арифметическим путем через развитие функции переменной величины, получившей форму двучлена путем приращения, оправдывается и другая ее сторона, именно опущение прочих членов полученного ряда. Если бы было признано, что единственно в этом коэффициенте и есть нужда, то с его нахождением все, что касается теории, было бы, как сказано, закончено менее, чем в полчаса, и опущение прочих членов ряда не представляло бы никакого затруднения, так как о них, как о членах ряда (как вторая, третья и т. д. производные функции, они находят свое определение уже при определении первой), вовсе не поднималось бы речи, ибо в них не было бы никакой надобности.

Можно предпослать здесь то замечание, что при рассмотрении метода дифференциального исчисления сейчас же бросается в глаза, что он изобретен и установлен не ради себя самого; он не только не обоснован для себя, как особый способ аналитического действия, но необходимость опускать члены, получающиеся через развитие функции, несмотря на то, что все это развитие в целом признается относящимся к делу — ибо дело именно состоит в различении развитой функции переменной величины, после придания ей вида двучлена, от первоначальной функции — совершенно, напротив, противоречит всем основоположениям математики. Как потребность в таком образе действия, так и недостающее ему самому в себе оправдание, сейчас же указывают на то, что его источник и основание находятся где-то вне его. Вообще в науке бывают случаи, когда то, что заранее установлено, как элементарное, и из чего выводятся предложения науки, оказывается неочевидным и требующим, напротив, для себя повода и обоснования в том, что вытекает из него. История дифференциального исчисления показывает, что оно имело свое начало в различных так называемых методах касательных, которые представляли собою как бы фокусы; этот образ действия, распространенный и на другие предметы, был возведен затем в сознание и выражен в отвлеченных формулах, которым старались придать значение принципов.

Было показано, что определенность понятия так называемых бесконечно малых есть определенность качественно-количественная, которая ближайшим образом положена, как отношение между определенными количествами, с чем связывается эмпирическая попытка обнаружить эту определенность понятия в тех описаниях или определениях, которые находят в бесконечно малом, поскольку оно признается за бесконечно малую разность или за что-либо другое подобное. Это совершается лишь в интересе отвлеченной определенности понятия, как таковой; дальнейший же вопрос должен состоять в том, как отсюда перейти к математической форме и ее {186)приложению. В конце концов, нужно разработать еще далее теоретическую сторону, определенность понятия, которая сама по себе не окажется бесплодною; затем должно рассмотреть отношение ее к ее приложению, и как в том, так и в другом случае показать, насколько это здесь уместно, что получающиеся общие выводы соответствуют тому, чем занимается дифференциальное исчисление, и тому способу, которым оно пользуется.

Прежде всего следует напомнить о том, что форма, свойственная в математике рассматриваемой теперь определенности понятия, уже более или менее изъяснена. Качественная определенность количественного, во-первых, вообще обнаружена в количественном отношении, но уже при рассмотрении различных так называемых действий счета (ср. соотв. примеч.) было предусмотрено, что подлежащее еще потом в своем месте рассмотрению степенное отношение есть то, в чем число через приравнение моментов своего понятия, единицы и определенного числа, положено, как возвратившееся к себе, и что тем самым в нем содержится момент бесконечности, бытие для себя, т. е. определения самим собою. Ясно выраженная качественная определенность величин присуща поэтому, как также было указано, существенным образом степенным определениям, и так как специфическая особенность дифференциального исчисления состоит в действиях над качественными формами величин, то свойственный ему математический предмет состоит в обращении с формами степеней, и все задачи и их решения, с которыми имеет дело дифференциальное исчисление, показывают, что интерес сосредоточивается в них единственно на разработке степенных определений.

Как ни важна эта основа, и хотя она сейчас же выдвигает на первое место нечто определенное вместо совершенно формальных категорий переменных, непрерывных или бесконечных величин и т. п., или функций вообще, но она еще слишком обща, с тем же имеют дело и другие действия; уже возвышение в степень и извлечение корней, за сим учение о показательных величинах и логарифмах, ряды, уравнения высших степеней имеют интерес и приложение также лишь к отношениям, основанным на степенях. Без сомнения, все это в своей совокупности составляет систему учения о степенях; но какие именно из различных отношений, в коих положены степенные определения, суть те, которые составляют собственный предмет и интерес для дифференциального исчисления, это должно быть выведено из него самого, т. е. из так называемых его приложений. Последние и составляют поистине самую суть дела, действительный прием математического разрешения известного круга задач; этот прием возник ранее, чем теория или общая часть, и был впоследствии назван приложением лишь в виду позднее созданной теории, которая имела целью установить его общий метод, а также дать ему принципы, т. е. оправдание. Как тщетно было старание найти при современном понимании этого приема такие принципы, которые действительно разрешали бы возникающее при этом противоречие, а не извиняли бы или прикрывали бы {187}его указанием на незначительность математически необходимого, а между тем при этом приеме опускаемого члена, или на сводящуюся к тому же возможность бесконечного или любого приближения и т. п., — это было указано в предыдущем примечании. Если бы в той действительной части математики, которая именуется дифференциальным исчислением, общие начала метода были отвлеченно изложены и иначе, чем это делалось доселе, то сказанные принципы и труд над ними оказались бы столь же излишними, так как в них самих есть нечто ложное и противоречивое.

Если мы исследуем своеобразие этой части математики путем простого выделения того, что в ней существует, то ее предметом окажутся α) уравнения, в которых любое число величин (мы можем здесь вообще остановиться на двух) связано в определенное целое так, что, во-первых, их определенность состоит в эмпирических величинах, как их постоянных пределах, и затем в способе связи как с последними, так и между собою, как это вообще имеет место в уравнениях; но так как для обеих величин дано лишь одно уравнение (то же справедливо относительно многих уравнений со многими величинами в том смысле, что число уравнений всегда менее, чем число величин), то это уравнения неопределенные; а во-вторых, что одна из сторон, сообщающая величинам их определенность, состоит в том, что они (по крайней мере одна из них) даны в уравнении в степени высшей, чем первая степень.

Здесь нужно сделать несколько замечаний; во-первых, что величины по первому из вышеизложенных определений имеют вполне лишь свойства таких переменных величин, какие встречаются в задачах неопределенного анализа. Они неопределенны, но так, что если одной почему-либо сообщается вполне определенное т. е. числовое значение, то и другая становится определенною; таким образом, одна из них есть функция другой. Категории переменных величин, функций и т. п. имеют поэтому для той специфической определенности, о которой здесь идет речь, лишь формальное значение, так как этим категориям свойственна общность, не содержащая еще того специфического, к коему направлен весь интерес дифференциального исчисления, равно как из них нельзя вывести этого специфического и через анализ; это суть простые, незначительные, легкие определения, которые становятся трудными лишь постольку, поскольку в них включают для того, чтобы затем вывести из них, то, что им несвойственно, именно специфическое определение дифференциального исчисления. Что касается далее т. наз. постоянной величины, то о ней следует сказать, что она есть ближайшим образом безразличная эмпирическая величина, имеющая для переменных величин определяющее значение лишь по своему эмпирическому определенному количеству, как предел их минимума и максимума; но способ соединения постоянной величины с переменными есть один из моментов для природы той частной функции, которую образуют эти величины. Наоборот, постоянные величины суть сами функции; поскольку, например, прямая линия имеет значение параметра параболы, то это значение приводит к тому, что линия {188}есть функция y2/x; точно также в развитии двучлена постоянная величина, как коэффициент первого члена ряда, есть сумма корней, второго — сумма их произведений по два и т. д., т. е. эти постоянные суть здесь вообще функции корней; там, где в интегральном исчислении постоянная определяется из данной формулы, она считается ее функциею. Эти коэффициенты будут рассмотрены нами далее еще и в другом определении, как функции, конкретное значение которых составляет их главный интерес.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Учение о бытии"

Книги похожие на "Учение о бытии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Георг Вильгельм Фридрих Гегель

Георг Вильгельм Фридрих Гегель - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Георг Вильгельм Фридрих Гегель - Учение о бытии"

Отзывы читателей о книге "Учение о бытии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.