Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews"
Описание и краткое содержание "Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews" читать бесплатно онлайн.
Детально излагаются методики построения стационарных и нестационарных статистических моделей по прогнозированию курса доллара США с использованием программ EViews и Excel. При этом прогнозы по курсу доллара к рублю делаются с упреждением в один месяц, две и одну неделю, а по курсу евро к доллару — с упреждением в один день. Особый акцент сделан на составлении (с установленным инвестором уровнем надежности) прогнозов цен покупки и продажи валют для работы на валютном рынке на основе разработанных статистических моделей. Все методики с успехом применяются на практике.
Для всех, кто интересуется валютным рынком, собирается зарабатывать или уже зарабатывает на этом рынке, хочет научиться делать прогнозы по курсам валют. Для валютных инвесторов, трейдеров и студентов, будущая профессия которых связана с работой в банке, финансовой компании или с операциями на финансовых и товарных рынках.
Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDollar.
Шаг 2. Выбор опций в EViews для решения уравнения регрессииПосле импорта данных в Excel выбираем в командной строке EViews опции OBJECT/NEW OBJECT, а затем в появившемся окне (NEW OBJECT (НОВЫЙ ОБЪЕКТ) выбираем опцию EQUATION (УРАВНЕНИЕ) — рис. 3.3).
Далее в EViews появляется новое окно — EQUATION ESTIMATION (ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить, как показано на рис. 3.4.
Следует иметь в виду, что в опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) в мини-окне METHOD (МЕТОД РЕШЕНИЯ) по умолчанию появляется опция LS — LEAST SQUARES (NIC AND ARMA), название которой переводится как МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (НЕЛИНЕЙНЫЙ МНК И ARM А). Поскольку это уравнение авторегрессии мы решаем с помощью метода наименьших квадратов, то эту опцию мы оставляем. Хотя при необходимости в EViews можно использовать несколько других методов решения уравнений, на которых мы сейчас не будем останавливаться.
Шаг 3. Выбор параметров оцениваемой статистической моделиВ опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) есть еще одно мини-окно — SAMPLE (ВЫБОРКА), в котором по умолчанию указывается либо общее количество наблюдений, либо период наблюдения. В данном случае в мини-окне SAMPLE появилась надпись: 1992М06 2010М05, что означает, что наша выборка содержит ежемесячные данные за период с июня 1992 г. по май 2010 г.
Особенно внимательным следует быть при заполнении миниокна EQUATION SPECIFICATION (СПЕЦИФИКАЦИЯ УРАВНЕНИЯ), в котором нужно написать латиницей название зависимой переменной (ее в списке всегда пишут первой слева) и независимых переменных, а также — в случае необходимости — константу (свободный член уравнения), обозначаемую латинской буквой с.
В нашем случае мини-окно EQUATION SPECIFICATION заполняется следующим образом:
USDollar USDollar(-l) USDollar(-2) с, (3.14)
где USDollar — зависимая переменная, курс доллара США;
USDollar(-1) — независимая переменная, курс доллара США с лагом в один месяц;
USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца;
с — свободный член (константа).
Мини-окно EQUATION SPECIFICATION легко заполнить, если воспользоваться уравнением авторегрессии (3.13). При этом нужно сделать следующее: во-первых, убрать буквенные обозначения коэффициентов регрессии, но оставить константу с; во-вторых, вместо Yt поставить соответствующее название зависимой переменной — USDollar, а для факторных (независимых) переменных Yt-1 и Yt_2 в скобках еще и добавить соответствующую цифру лага со знаком минус.
Если вспомнить, что формула (3.14) фактически означает уравнение авторегрессии 2-го порядка со свободным членом, то миниокно EQUATION SPECIFICATION можно заполнить другой, более краткой, но вполне равнозначной формулой:
USDollar AR(1) AR(2) с, (3.15)
где USDollar — зависимая переменная;
AR(1) — авторегрессия 1-го порядка, или USDollar(-l);
AR(2) — авторегрессия 2-го порядка, или USDollar(-2).
Шаг 4. Вывод в EViews параметров уравнения авторегрессииИтак, все опции, необходимые для решения уравнения авторегрессии, установлены. Далее щелкаем кнопку ОК в окне EQUATION ESTIMATION. В результате чего получаем данные с параметрами уравнения авторегрессии, которые мы поместили в табл. 3.3. При этом не стоит удивляться тому, что после соответствующей корректировки количество наблюдений у нас сократилось с 215 до 213. Это обусловлено тем, что при создании факторных переменных с лагом в один и в два месяца мы потеряли два наблюдения. В результате теперь наша скорректированная выборка охватывает период не с июня 1992 г., а с августа 1992 г. по апрель 2010 г.
Чтобы нашему читателю было легче понять содержащиеся в табл. 3.3 англоязычные термины, они даются вместе с параллельным переводом в скобках. Если сравнить табл. 3.3 с выводом итогов, полученным после решения этого же уравнения авторегрессии в Excel (см. табл. 3.2), то можно прийти к выводу о тождественности большей части информации, имеющейся в обеих таблицах. Следует также заметить, что как в программе Excel, так и в EViews мы смогли получить коэффициенты уравнения регрессии с одинаковым уровнем точности.
3.6. Интерпретация параметров уравнения авторегрессии в EViews
Какой статистический смысл имеют те или иные параметры уравнения регрессии при выводе итогов в Excel, уже говорилось в главе 1 книги. Однако при выводе итогов в EViews мы получаем новую информацию о других важных параметрах уравнения регрессии, которых нет при выводе итогов в Excel. Чтобы обратить внимание читателя на эти дополнительные параметры, мы выделили их жирным шрифтом в табл. 3.3. Познакомимся со статистическим смыслом этих еще не изученных нами дополнительных параметров уравнения регрессии.
1. В таблице 3.3 среди пока неизвестных нам параметров уравнения регрессии можно назвать такой важный показатель, как LOG LIKELIHOOD (ЛОГАРИФМ МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ), который используется в качестве критерия для отбора наиболее адекватных уравнений регрессии. Чем выше логарифм максимального правдоподобия, тем более адекватным считается уравнение регрессии. При этом логарифм максимального правдоподобия находится по следующей формуле:
где Т — количество наблюдений;
е — отклонение (остатки) прогноза от фактического курса доллара;
π — число пи, равное 3,141593…
В нашем случае логарифм максимального правдоподобия имеет следующее значение:
2. Следующим еще не изученным нами параметром уравнения регрессии является DURBIN-WATSON STAT (КРИТЕРИЙ ДАРЬИНА — УОТСОНА), который является тестом на наличие автокорреляции в остатках. Как мы уже говорили, при наличии автокорреляции в остатках оценки коэффициентов уравнения регрессии нельзя назвать состоятельными и эффективными. При этом критерий Дарбина — Уотсона находится следующим образом:
где п — количество наблюдений;
еt — отклонение (остатки) прогноза от фактического курса доллара;
еt−1 — отклонение (остатки) прогноза от фактического курса доллара с лагом в один месяц.
В нашем случае критерий Дарбина — Уотсона имеет следующее значение:
Правда, критерий Дарбина — Уотсона нельзя использовать для тестирования уравнений авторегресии на наличие автокорреляции в остатках, поскольку в этом случае он теряет свою мощность. Это объясняется тем, что применение критерия Дарбина — Уотсона предполагает строгое соблюдение предпосылки о разделении переменных на зависимую (результативную) и независимую (факторную) переменную. В уравнениях авторегрессии, как известно, в правой части уравнения имеются лаговые значения результативной переменной, а следовательно, указанная предпосылка не соблюдается. В этом случае фактическое значение критерия Дарбина — Уотсона приблизительно равно 2 как при наличии, так и при отсутствии автокорреляции в остатках. Тем не менее в обычных уравнениях регрессии этот критерий весьма полезен для тестирования остатков на наличие автокорреляции.
3. Следующий параметр уравнения регрессии, на наш взгляд, не представляет каких-либо трудностей для его понимания — MEAN DEPENDENT VAR (СРЕДНЕЕ ЗНАЧЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом среднее значение зависимой переменной рассчитывается по довольно простой формуле
где п — количество наблюдений;
Yt — зависимая переменная, ежемесячный курс доллара.
В нашем случае среднее значение (вернее сказать, среднее хронологическое, поскольку мы берем период за 213 месяцев) зависимой переменной будет равно
4. Еще один показатель, характеризующий зависимую переменную данного уравнения регрессии — S.D. DEPENDENT VAR (СТАНДАРТНОЕ ОТКЛОНЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом стандартное отклонение зависимой переменной находится следующим образом:
В нашем случае стандартное отклонение зависимой переменной вычисляется достаточно легко:
5. Важными параметрами уравнения регрессии являются два информационных критерия — AKAIKE INFO CRITERION (ИНФОРМАЦИОННЫЙ КРИТЕРИЙ АКАИКА) и SCHWARZ CRITERION (КРИТЕРИЙ ШВАРЦА). Оба этих информационных критерия можно использовать в качестве критериев для определения в уравнении регрессии оптимальной длины лага. При этом они основаны на принципе снижения остаточной суммы квадратов при добавлении значимого фактора. Так, информационный критерий Акаика находится по следующей формуле:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews"
Книги похожие на "Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews"
Отзывы читателей о книге "Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews", комментарии и мнения людей о произведении.