» » » Вокруг Света - Журнал «Вокруг Света» №10 за 2008 год


Авторские права

Вокруг Света - Журнал «Вокруг Света» №10 за 2008 год

Здесь можно скачать бесплатно " Вокруг Света - Журнал «Вокруг Света» №10 за 2008 год" в формате fb2, epub, txt, doc, pdf. Жанр: Периодические издания. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Вокруг Света - Журнал «Вокруг Света» №10 за 2008 год
Рейтинг:
Название:
Журнал «Вокруг Света» №10 за 2008 год
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Вокруг Света» №10 за 2008 год"

Описание и краткое содержание "Журнал «Вокруг Света» №10 за 2008 год" читать бесплатно онлайн.








Кстати, аналогичным образом следят и за изменениями поступательной скорости аппарата. Для ее прямых измерений нужен тяжелый доплеровский радар. Его ставят на Земле, и он измеряет только одну составляющую скорости. Зато не составляет проблемы на борту аппарата измерить его ускорение при помощи высокоточных акселерометров, например, пьезоэлектрических. Они представляют собой специальным образом вырезанные кварцевые пластины размером с английскую булавку, которые деформируются под действием ускорения, в результате чего на их поверхности появляется статический электрический заряд. Непрерывно измеряя его, следят за ускорением аппарата и, интегрируя его (вновь не обойтись без бортового компьютера), вычисляют изменения скорости. Правда, такие измерения не учитывают влияния на скорость аппарата гравитационного притяжения небесных тел.

Американский астронавт отрабатывает в бассейне процедуру замены гиродинов на телескопе «Хаббл». Фото: NASA

Точность маневра

Итак, ориентация аппарата определена. Если она отличается от требуемой, немедленно выдаются команды «исполнительным органам», например, микродвигателям на сжатом газе или жидком топливе. Обычно такие двигатели работают в импульсном режиме: короткий толчок, чтобы начать поворот, и тут же новый в противоположном направлении, чтобы не «проскочить» нужное положение. Теоретически достаточно иметь 8—12 таких двигателей (по две пары для каждой оси вращения), однако для надежности их ставят больше. Чем точнее требуется выдерживать ориентацию аппарата, тем чаще приходится включать двигатели, что повышает расход топлива.

Другую возможность управления ориентацией обеспечивают силовые гироскопы — гиродины. Их работа основана на законе сохранения момента импульса. Если под влиянием внешних факторов станция стала разворачиваться в определенном направлении, достаточно «подкрутить» маховик гиродина в ту же сторону, он «примет вращение на себя» и нежелательный поворот станции прекратится.

С помощью гиродинов можно не только стабилизировать спутник, но и менять его ориентацию, причем иногда даже точнее, чем с помощью ракетных двигателей. Но чтобы гиродины были эффективны, они должны обладать большим моментом инерции, что предполагает значительную массу и размеры. Для крупных спутников силовые гироскопы могут быть очень велики. Например, три силовых гироскопа американской станции «Скайлэб» весили по 110 килограммов каждый и делали около 9000 об/мин. На Международной космической станции (МКС) гиродины — это устройства размером с большую стиральную машину, каждое массой около 300 килограммов. Несмотря на тяжесть, использовать их все же выгоднее, чем постоянно снабжать станцию топливом.

Однако большой гиродин нельзя разгонять быстрее нескольких сотен или максимум тысяч оборотов в минуту. Если внешние возмущения постоянно закручивают аппарат в одну и ту же сторону, то со временем маховик выходит на предельные обороты и его приходится «разгружать», включая двигатели ориентации.

Для стабилизации аппарата достаточно трех гиродинов с взаимно перпендикулярными осями. Но обычно их ставят больше: как и всякое изделие, имеющее подвижные детали, гиродины могут ломаться. Тогда их приходится ремонтировать или заменять. В 2004 году для ремонта гиродинов, расположенных «за бортом» МКС, ее экипажу пришлось совершить несколько выходов в открытый космос. Замену отработавших свой ресурс и вышедших из строя гиродинов выполняли астронавты NASA, когда посещали на орбите телескоп «Хаббл». Очередная такая операция запланирована на конец 2008 года. Без нее космический телескоп, скорее всего, выйдет из строя в будущем году.

Бортовое питание

Для работы электроники, которой любой спутник напичкан «под завязку», нужна энергия. Как правило, в бортовой электросети используется постоянный ток напряжением 27—30 В. Для разводки питания служит разветвленная кабельная сеть. Микроминиатюризация электроники позволяет уменьшить сечение проводов, поскольку большой силы тока современной аппаратуре не требуется, но существенно сократить их длину не удается — она зависит в основном от размеров аппарата. Для маленьких спутников — это десятки и сотни метров, а для космических кораблей и орбитальных станций — десятки и сотни километров!

На аппаратах, срок службы которых не превышает нескольких недель, в качестве источников питания применяют одноразовые химические батареи. Долгоживущие телекоммуникационные спутники или межпланетные станции обычно оснащают солнечными батареями. Каждый квадратный метр на орбите Земли получает от Солнца излучение общей мощностью 1,3 кВт. Это так называемая солнечная постоянная. Современные фотоэлементы преобразуют в электричество 15—20% этой энергии. Впервые солнечные батареи были применены на американском спутнике «Авангард-1», запущенном в феврале 1958 года. Они позволили этому малютке продуктивно жить и работать до середины 1960-х, тогда как советский «Спутник-1», имевший на борту только аккумулятор, заглох уже через несколько недель.

Сборка и настройка панелей солнечных батарей для спутника. Фото: SPL/EAST NEWS

Важно отметить, что солнечные батареи нормально работают только в связке с буферными аккумуляторами, которые подзаряжаются на солнечной стороне орбиты, а в тени — отдают энергию. Эти аккумуляторы также жизненно необходимы в случае потери ориентации на Солнце. Но они тяжелые, и поэтому за счет них нередко приходится сокращать массу аппарата. Иногда это приводит к серьезным неприятностям. Например, в 1985 году во время беспилотного полета станции «Салют-7» ее солнечные батареи из-за сбоя перестали подзаряжать аккумуляторы. Очень быстро бортовые системы выжали из них все соки, и станция отключилась. Спасти ее смог специальный «Союз», посланный к молчащему и не реагирующему на команды с Земли комплексу. Состыковавшись со станцией, космонавты Владимир Джанибеков и Виктор Савиных сообщили на Землю: «Холодно, без перчаток работать нельзя. На металлических поверхностях иней. Пахнет застоявшимся воздухом. На станции ничего не работает. Поистине космическая тишина...» Умелые действия экипажа смогли вдохнуть жизнь в «ледяной дом». А вот спасти в аналогичной ситуации один из двух спутников связи при первом запуске пары «Ямалов-100» в 1999 году не удалось.

Во внешних областях Солнечной системы, за орбитой Марса , солнечные батареи неэффективны. Питание межпланетных зондов обеспечивают радиоизотопные теплоэлектрогенераторы (РИТЭГ). Обычно это неразборные, герметичные металлические цилиндры, из которых выходит пара проводов под напряжением. Вдоль оси цилиндра размещен стержень из радиоактивного и поэтому горячего материала. Из него, как из массажной щетки-расчески, торчат термопары. Их «горячие» спаи подведены к центральному стержню, а «холодные» — к корпусу, охлаждаясь через его поверхность. Разность температур рождает электрический ток. Неиспользованное тепло можно «утилизировать» для подогрева аппаратуры. Так делалось, в частности, на советских «Луноходах» и на американских станциях «Пионер» и «Вояджер».

В качестве источника энергии в РИТЭГах применяются радиоактивные изотопы, как короткоживущие с периодом полураспада от нескольких месяцев до года (полоний-219, церий-144, кюрий-242), так и долгоживущие, которых хватает на десятки лет (плутоний-238, прометий-147, кобальт-60, стронций-90). Например, генератор уже упоминавшегося зонда «Новые горизонты» «заправлен» 11 килограммами двуокиси плутония-238 и дает выходную мощность 200—240 Вт. Корпус РИТЭГа делают очень прочным — в случае аварии он должен выдержать взрыв ракеты-носителя и вход в атмосферу Земли; кроме того, он служит экраном для защиты бортовой аппаратуры от радиоактивных излучений.

В целом РИТЭГ — вещь простая и чрезвычайно надежная, ломаться в нем просто нечему. Два его существенных минуса: страшная дороговизна, поскольку необходимые делящиеся вещества в природе не встречаются, а нарабатываются годами в ядерных реакторах, и сравнительно невысокая выходная мощность в расчете на единицу массы. Если же наряду с долгой работой нужна еще и большая мощность, то остается применить ядерный реактор. Они стояли, например, на радиолокационных спутниках морской разведки УС-А разработки ОКБ В.Н. Челомея. Но в любом случае использование радиоактивных материалов требует самых серьезных мер безопасности, особенно на случай нештатных ситуаций в процессе выведения на орбиту.

Избежать теплового удара

Почти вся потребляемая на борту энергия в конечном счете превращается в тепло. К этому добавляется нагрев солнечным излучением. На небольших спутниках, чтобы не допустить перегрева, применяют тепловые экраны, отражающие солнечный свет, а также экранно-вакуумную теплоизоляцию — многослойные пакеты из чередующихся слоев очень тонкой стеклоткани и полимерной пленки с алюминиевым, серебряным или даже золотым напылением. Снаружи на этот «слоеный пирог» надевается герметичный чехол, из которого откачивается воздух. Чтобы сделать солнечный нагрев более равномерным, спутник можно медленно поворачивать. Но таких пассивных методов хватает лишь в редких случаях, когда мощность бортовой аппаратуры мала.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Вокруг Света» №10 за 2008 год"

Книги похожие на "Журнал «Вокруг Света» №10 за 2008 год" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Вокруг Света

Вокруг Света - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Вокруг Света - Журнал «Вокруг Света» №10 за 2008 год"

Отзывы читателей о книге "Журнал «Вокруг Света» №10 за 2008 год", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.