» » » » Александр Шокин - Министр невероятной промышленности


Авторские права

Александр Шокин - Министр невероятной промышленности

Здесь можно скачать бесплатно "Александр Шокин - Министр невероятной промышленности" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Министр невероятной промышленности
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Министр невероятной промышленности"

Описание и краткое содержание "Министр невероятной промышленности" читать бесплатно онлайн.



Книга посвящена жизни и деятельности Александра Ивановича Шокина, государственного деятеля, инженера, ученого, министра электронной промышленности СССР, возглавлявшего и создававшего ее с момента выделения в самостоятельную отрасль в течение почти двадцати пяти лет. За это время объем выпускаемой продукции увеличился более чем в сто (!) раз, а Советский Союз стал единственным в мире государством, имевшим возможность создавать самые современные системы вооружения, используя только отечественные электронные компоненты.

По мере того, как общество начинает осознавать истинную высоту вершины достижений, на которую оно так долго и тяжело взбиралось и с которой так быстро свалилось, растет интерес к периоду наибольшего могущества нашей страны, и вряд ли исследователи удовлетворятся только краткими биографическими справками из энциклопедий о тех, кто сумел его достичь.

Книга написана на основе документов, писем из личного архива автора, книг и публикаций в периодике, а также личных воспоминаний, содержит уникальные фотографии.






Технология разработки фотошаблонов, которая стимулировала развитие всех литографических методов, настолько усложнилась, что стала невозможной без машинного проектирования. В системе анализа и разработки проектируемой топографии фотошаблона центральным элементом стал диалоговый видеотерминал, снабженный световым пером для внесения изменений. ЭВМ делали все, начиная от проверки логических уравнений и кончая распечаткой команд для установок по производству ИС. Машинное проектирование ИС становилось общепринятым методом. Если большие ЭВМ получали от МРП, то производство мини-компьютеров, необходимых и для проектирования и для управления производственными линиями, было налажено у себя, в шестом главке.

Чтобы получились годные приборы весь цикл производства должен идти в чистейшей среде, исключающей загрязнение поверхности кристалла, и это создает огромные сложности для производства.

Так, технологии изготовления ИС немыслима без создания "чистых комнат", позволяющих уменьшить загрязнение кремниевых пластин пылевыми и другими частичками. Такие помещения начали появляться на предприятиях в конце шестидесятых годов. Для них необходимы были фильтры грубой и тонкой очистки воздуха, малошумящие вентиляторы, создающие ламинарный — безвихревой — поток воздуха в зоне обработки. В первых "чистых комнатах" в 1 м3 где-то не более 3,5 тыс. частичек, но для производства сверхбольших интегральных схем такой воздух был уже слишком пыльным и не годился. Все необходимые компоненты "чистых комнат" были разработаны и выпускались серийно в МЭПе.

Значительную часть времени обработки полупроводниковые пластины проводят в жидких средах. Если кислоты и другие химические материалы закупались у химической промышленности с постоянной борьбой за их немыслимую для химиков чистоту, то вода для промывки кремниевых пластин, которая требуется в огромных количествах, вырабатывалась на самих предприятиях полупроводниковой промышленности. Для этого они должны иметь системы подготовки чистейшей деионизованной воды с двойной дистилляцией и замкнутые контуры ее оборота в водопроводных трубах из нержавеющей стали с очисткой механическими и ионными фильтрами от примесей, ультрафиолетовой очисткой от бактерий и другой органики, поселяющейся в трубах и пр.

С усложнением интегральной технологии возникли трудности соединения миниатюрного кристалла с подложкой гибридной схемы или печатной платы. Самым распространенным решением стало помещение кристалла в корпус из керамики, пластмассы или металла, который с двух сторон имел плоские ленточные выводы, расположенные в два или четыре ряда. Производство корпусов из керамики и металла было налажено на специализированных заводах второго и седьмого главков. Пластмассовые корпуса требовали совершенного инструментального хозяйства для создания точнейших штампов и многоместных пресс-форм, специальной пластмассы, выводных рамок и многого, многого другого. Все это специфическое хозяйство тоже было создано в МЭПе по собственным же разработкам. Особую гордость составляли станки для электроискровой обработки, впервые появившиеся во Фрязино еще в послевоенные годы для производства СВЧ-приборов, а теперь широко распространившихся для изготовления инструмента и оснастки полупроводниковой промышленности.

Последняя стадия полупроводникового производства — технический контроль продукта — для сложной интегральной схемы не могла уже обойтись без дорогостоящего измерительного оборудования с использованием ЭВМ. А.И., прекрасно зная возможности и обязанности МРП, довольно долго упрямо требовал от радистов обеспечения МЭПа измерительными системами для интегральных схем, а те под разными предлогами отказывались. Во всех других подобных случаях А.И. давно махнул бы рукой, а здесь не хотел уступать Калмыкову.

Электронные приборы уже тогда представляли собой очень наукоемкую продукцию. Американские производители электронных компонентов затратили в 1977 году на НИОКР 7 % от общей стоимости продаж продукции, для полупроводниковых приборов и отдельно интегральных схем в 1977 году это составило соответственно 8,5 и 16,4 %, а средний уровень затрат на данные цели для всех фирм обрабатывающей промышленности США, составил только 3,1 % стоимости продаж. Эти проценты, соотнесенные со значительно более высоким объемом производства в США вырастают в громадные затрат, да и они не всегда дают полную картину, поскольку фирмы стараются не учитывать в своей официальной статистике государственное финансирование НИОКР.

Советской электронике таких средств не давали, а требования, в том числе по сроком, увязанным со сроками создания новых систем, оставались, и отсюда вытекала потребность в новых, более эффективных подходах к разработкам интегральных схем. Средство было найдено в переходе к построению с заказчиками комплексно-целевых программ (КЦП). Исходя из сопоставления заявок потребителей с состоянием и прогнозом развития данного направления у себя и за рубежом, в КЦП помимо создания собственно параметрического ряда стали включать разработку базовой технологии, необходимого состава и единиц оборудования, нужных материалов, корпусов, оснастки и т. д. Совмещение системы приборных КЦП с обеспечивающими программами позволяло просчитывать затраты, мощности предприятий, подготовку новых площадей и с нужной достоверностью прогнозировать объемы выпуска различных ИС.

К 1974 году отрасль микроэлектроники развивалась уже главным образом с использованием КЦП. Одна из главнейших называлась "Микропроцессор" и была ориентирована на наиболее важные для текущего момента направления: бортовые ЭВМ для авиации, ракетостроения, кораблестроения, управления станками и технологическим оборудованием. В разработки БИС микропроцессоров были заложены передовые принципы развития таких устройств, предложена микропроцессорная вычислительная система с повышенной производительностью, гибкой перестраиваемой системой команд и расширенными возможностями.

Но прогресс электроники затрагивал не только интегральные схемы, и для поддержки современного уровня аппаратуры требовались все более совершенные новые изделия электронной техники. Не было в мире таких комплектующих, какие бы не могли выпускать в Советском Союзе. Минэлектронпром начал производить новые индуктивные приборы, такие, как трансформаторы и дроссели, в которых были использованы теперь уже привычные ферритовые сердечники. Начался процесс уменьшения габаритов этих изделий и повышения граничной частоты их рабочего частотного диапазона, новые катушки индуктивности с миниатюрными сердечниками были по своим размерам в 1000 раз меньше прежних коммерческих изделий. Производство ферритовых изделий было сосредоточено в седьмом Главном управлении МЭПа.

По-прежнему в аппаратуре широко использовались потенциометры, поскольку схемотехника в основном оставалась пока еще аналоговой, а сервомеханизмы требовали применения электромеханических элементов обратной связи. В ходу были потенциометры самого различного типа: проволочные, керметовые, из проводящей пластмассы, угольные и металлопленочные. Были освоены малогабаритные подстроечные потенциометры.

При разработке конденсаторов основной упор делался на освоение новых материалов и технологии, призванных обеспечить получение большей емкости при меньших габаритах. Новые подстроечные компоненты — потенциометры и конденсаторы перемененной емкости — могли монтироваться непосредственно на печатной плате, а не на передней панели устройства.

Огромная номенклатура коммутационных элементов: разъемных соединителей, кнопочных и галетных переключателей и многое другое выпускалась предприятиями пятого главного управления. И здесь электроника сталкивалась с низким качеством отечественных материалов — металл не давал сочетания необходимой жесткости с усталостными характеристиками.

Ко всем относительно объективным сложностям добавлялись совсем уж субъективные, если не сказать глупые. Весь мир золотил контакты в разъемах, дабы таким способом избежать их окисления, при котором контакты нарушаются, и аппаратура выходит из строя. У нас из соображений ложной экономии — копеечной, так как толщина покрытия составляет не более трех микрон, — это было запрещено. Так же, как и применять тантал в конденсаторах. А ведь тантала в качестве диэлектрика в поляризованных и неполяризованных конденсаторах давал им возможность работать при высоких температурах (с легкостью в пределах 125 °C), да габаритные размеры уменьшались на две трети по сравнению с электролитическими конденсаторами эквивалентной емкости.

Для низковольтных транзисторных схем того периода новые конденсаторы подходили идеально.

Все попытки добиться разрешения применения тантала для конденсаторов или золота для разъемов невоенного применения были тщетны, и проблему эту, вызывавшую справедливые нарекания потребителей, так и не удалось решить. То, что эта копеечная экономия оборачивается громадными потерями при росте весов и габаритов аппаратуры и ее отказов, объяснить ответственным (а точнее — безответственным) чиновникам было невозможно, так как в их сознании электроника по-прежнему оставалась чем-то второстепенным, но с огромными — не по чину — запросами.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Министр невероятной промышленности"

Книги похожие на "Министр невероятной промышленности" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Шокин

Александр Шокин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Шокин - Министр невероятной промышленности"

Отзывы читателей о книге "Министр невероятной промышленности", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.