Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Поскольку ничего большего концепция множественности миров не предлагает, действительного и исчерпывающего объяснения ни одному из этих феноменов мы не получаем. В отсутствие теории, описывающей, каким образом «воспринимающее сознание» разделяет мир на ортогональные альтернативы, у нас нет никаких причин ожидать, что такое сознание не будет способно осознавать линейные суперпозиции совершенно различных состояний теннисных мячей или, скажем, слонов. (Следует отметить, что одна лишь ортогональность «воспринимаемых состояний» — например, состояний |ΨД〉 и |ΨН〉 в приведенном выше примере — никоим образом не помогает эти состояния разделить. Сравните, например, пару состояний |L←〉 и |L→〉 с парой |L↑〉 и |L↓〉, которыми мы пользовались при обсуждении ЭПР-феноменов в §5.17. Обе пары состояний ортогональны, точно так же как ортогональны состояния |ΨД〉 и |ΨН〉, однако выбрать одну пару в ущерб другой мы не можем.) И еще одно: концепция множественности миров никак не объясняет чрезвычайную точность того удивительного правила, которое чудесным образом превращает квадраты модулей комплексных весовых коэффициентов в относительные вероятности{74}. (См. также §§6.6 и 6.7.)
6.3. Не принимая вектор |ψ〉 всерьез
Существует много различных вариантов точки зрения, согласно которой вектор состояния |ψ〉 не следует рассматривать как действительное отображение той или иной физической реальности, существующей на квантовом уровне. Вектор |ψ〉 вводится лишь в качестве вычислительного приема, удобного исключительно для вычисления вероятностей, либо служит для выражения «состояния знания» экспериментатора о физической системе. Иногда под |ψ〉 понимается не состояние индивидуальной физической системы, но целый ансамбль возможных подобных физических систем. Часто утверждают, что поведение вектора сложносцепленного состояния |ψ〉 ничем, с практической точки зрения (for all practical purposes[42], или просто FAPP с легкой руки Джона Белла{75}), не отличается от поведения такого ансамбля физических систем — а большего о проблеме измерения физикам знать и не нужно. Иногда можно услышать, что вектор |ψ〉 не может описывать какую бы то ни было квантовую реальность, так как понятие «реальность» к феноменам квантового уровня неприменимо — оно теряет здесь всякий смысл, поскольку реальным является лишь то, что можно «измерить».
Многие (в том числе и я — а также Эйнштейн и Шрёдингер, так что компания подобралась очень даже неплохая), впрочем, убеждены, что ничуть не больше смысла в ограничении «реальности» лишь объектами, которые мы способны воспринять — например, при помощи измерительных устройств (некоторых из них, по крайней мере), — и лишении «права на реальность» объектов, существующих на более глубоком, более фундаментальном уровне. Я не сомневаюсь, что мир на квантовом уровне выглядит странно и непривычно, но он отнюдь не становится от этого «нереальным». В самом деле, разве могут реальные объекты состоять из нереальных компонентов? Более того, управляющие квантовым миром математические закономерности замечательно точны — ничуть не менее точны, нежели более привычные уравнения, описывающие поведение макроскопических объектов, — несмотря на все те туманные образы, с которыми в нашем сознании ассоциируются «квантовые флуктуации» и «принцип неопределенности».
Однако убежденность в том, что хоть какая-то реальность должна существовать и на квантовом уровне, не избавляет нас от сомнений в возможности точно описать эту самую реальность посредством вектора состояния |ψ〉. В доказательство «нереальности» |ψ〉 выдвигаются самые различные аргументы. Во-первых, вектор |ψ〉, по всей видимости, вынужден время от времени претерпевать этот загадочный нелокальный разрывный «скачок», который я обозначаю здесь буквой R. Несколько неподобающее поведение для физически приемлемого описания мира, особенно если учесть, что у нас уже имеется изумительно точное и непрерывное уравнение Шрёдингера U, согласно которому, как предполагается, и эволюционирует вектор |ψ〉 (большую часть времени). Однако, как мы успели убедиться, эволюция U сама по себе заводит нас в дебри сложностей и неясностей множественно-мировых интерпретаций; если же мы хотим получить картину, сколько-нибудь адекватно описывающую реальную Вселенную, которая, как нам представляется, нас окружает, то нам просто необходима какая-никакая процедура R.
Другое нередко выдвигаемое возражение против реальности вектора |ψ〉 сводится к следующему: чередование U, R, U, R, U, R, …, представляющее собой, в сущности, типичное описание процесса в квантовой теории, не симметрично во времени (каждое U-действие начинается с процедуры R, но не завершается ею), и существует другое, полностью эквивалентное первому описание, в котором U-эволюции обращены во времени (см. НРК, с. 355, 356; рис. 8.1, 8.2). Почему первое описание соответствует «реальности», а второе нет? Есть мнение, что всерьез следует принимать оба описания (как прямую, так и обратную эволюцию вектора состояния) — они сосуществуют и дают в совокупности полное описание физической реальности (см. [61], [381] и [2]). Я склонен думать, что предположения эти, скорее всего, не лишены серьезных оснований, однако в настоящий момент мы на них останавливаться не будем. Мы вкратце коснемся их (и некоторых других родственных им) ниже, в §7.12.
Одно из наиболее частых возражений против принятия вектора |ψ〉 всерьез в качестве описания реальных процессов состоит в том, что его нельзя непосредственно «измерить» — в том смысле, что не существует экспериментального способа определить вектор состояния (пусть и с точностью до коэффициента пропорциональности), если мы об этом состоянии ничего не знаем. Возьмем для примера атом со спином 1/2. Вспомним (§5.10, рис. 5.19), что каждое возможное состояние спина такого атома характеризуется каким-то конкретным направлением в обычном пространстве. Однако если мы не имеем ни малейшего понятия, что это за направление, определить его мы никак не сможем. Мы можем лишь выбрать какое-либо одно направление и выяснить, в этом направлении ориентирована ось спина (ДА) или же в противоположном (НЕТ). Каким бы ни было начальное состояние спина, соответствующее направление в гильбертовом пространстве проецируется либо в ДА-пространство, либо в НЕТ-пространство; каждый исход реализуется с вполне определенной вероятностью. И тут мы теряем большую часть информации о том, каким было «действительное» начальное состояние спина. Все, что мы можем получить из измерения направления спина (в случае атома со спином 1/2), укладывается в один бит информации (ответ на общий вопрос — ДА или НЕТ), тогда как возможные состояния направления оси спина образуют континуум, для точного определения которого потребуется бесконечное количество битов информации.
Все это так, и все же противоположную позицию принять ничуть не легче — ту, согласно которой вектор состояния |ψ〉 оказывается в некотором роде физически «нереальным», являя собой лишь оболочку, содержащую полную сумму «наших знаний» о физической системе. Я бы даже сказал, что принять эту позицию неимоверно трудно, особенно если учесть, что подобная роль «знания» подразумевает немалую долю субъективности. О чьем, в конце концов, знании идет здесь речь? Совершенно точно — не о моем. Я очень мало действительно знаю об отдельных векторах состояния, детально описывающих поведение всех до единого окружающих меня объектов. А они, как ни в чем не бывало, продолжают себе свою идеально организованную деятельность, нимало не заботясь ни о том, что именно может стать кому-то «известно» о том или ином векторе состояния, ни о том, кто же станет счастливым обладателем этого драгоценного знания. Разве разные экспериментаторы, располагающие разным знанием о какой-либо физической системе, описывают эту самую систему с помощью различных векторов состояния? Отнюдь; все возникающие здесь различия относятся к тем особенностям каждого конкретного эксперимента, которые не оказывают сколько-нибудь существенного влияния на конечный результат.
Один из наиболее сильных доводов{76} в опровержение этой субъективной точки зрения на реальность |ψ〉 следует из того факта, что, каким бы ни был вектор состояния |ψ〉, всегда возможно (по крайней мере, в принципе) осуществить примитивное измерение (см. §5.13), ДА-пространство которого представляет собой луч в гильбертовом пространстве, определяемый вектором |ψ〉. Дело в том, что физическое состояние |ψ〉 (определяемое лучом комплексных кратных |ψ〉) определено однозначно, в силу того, что результат ДА для данного состояния является абсолютно достоверным. Никакое другое состояние таким свойством не обладает. Для любого другого состояния речь может идти лишь о некоторой вероятности (всегда меньшей, нежели полная уверенность) получения результата ДА, не исключающей и возможности того, что будет получен результат НЕТ. Таким образом, хотя мы и не можем посредством какого бы то ни было измерения выяснить, что же такое в действительности представляет собой вектор |ψ〉, физическое состояние |ψ〉 однозначно определяется тем, что должно (согласно соответствующему вектору) являться результатом измерения, которое могло бы быть осуществлено над этим состоянием. Здесь мы вновь встречаемся с контрфактуальностью (см. §§5.2, 5.3); впрочем, мы уже видели, насколько важную роль в предсказаниях квантовой теории играют контрфактуальные соображения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.