Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Описание и краткое содержание "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства." читать бесплатно онлайн.
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.
Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.
Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.
Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.
В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.
Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Квантовая механика утверждает, что частица может перемещаться от начальной точки до конечной по любому возможному пути, и этот факт отражает волновая функция частицы. В этом состоит одно из многих удивительных свойств квантовой механики. Вопреки классической физике, квантовая механика не приписывает частице определенную траекторию.
Но каким образом эксперимент с двумя щелями может указывать, что отдельный электрон ведет себя как волна, когда мы уже знаем, что электроны — это частицы? Ведь в конце концов не существует такой вещи, как половинка электрона. Каждый отдельный электрон фиксируется в определенном месте. Что же на самом деле происходит?
Ответ был уже дан мною выше. Вы можете наблюдать волновую картину, только зарегистрировав много электронов. Каждый отдельный электрон является частицей. Он попадает в определенное место на экране. Однако совокупный эффект многих электронов, падающих на экран, представляет собой классическую волновую картину, отражая тот факт, что пути двух электронов интерферируют. Это показано на рис. 45.
Волновая функция определяет вероятность того, что электрон попадет на экран в любом заданном месте. Электрон может попасть в любое место, но мы ожидаем обнаружить его в некотором определенном месте с определенной вероятностью, задаваемой значением волновой функции в данной точке. Совокупность многих электронов образует волну, которую можно рассчитать, исходя из предположения, что электрон проходит через обе щели.
В 1970-х годах Акира Тонамура в Японии и Пьерджорджо Мерли, Джулио Поцци и Джанфранко Миссироли в Италии смогли явно наблюдать этот эффект в реальных экспериментах. Они выстреливали электроны по одному и наблюдали, как создается волновая картина по мере того, как все больше электронов попадают на экран.
Вас может удивить, почему потребовалось дожить до двадцатого века, чтобы заметить нечто столь выдающееся, как корпускулярно-волновой дуализм. Например, почему люди не поняли раньше, что свет выглядит как волна, но на самом деле состоит из крохотных зернышек — фотонов?
Ответ состоит в том, что никто из нас (за возможными редкими исключениями, касающимися супергероев) не видит отдельных фотонов[67], так что квантовомеханические эффекты нелегко детектировать. Обычный свет не выглядит так, как будто он состоит из отдельных квантов. Мы наблюдаем пучки фотонов, образующих видимый свет. Большое число фотонов действует совместно, как классическая волна.
Чтобы непосредственно наблюдать квантовую природу света, необходим очень слабый источник фотонов или очень аккуратно настроенная аппаратура. Когда фотонов слишком много, вы не можете различить эффект от каждого из них по отдельности. Добавление еще одного фотона к классическому свету, состоящему из большого числа фотонов, не составляет большой разницы. Если лампочка в вашем доме, ведущая себя классически, испустит один дополнительный фотон, вы никогда этого не заметите. Наблюдать тонкие квантовые явления можно только с помощью тщательно разработанной аппаратуры.
Если вы не верите в то, что последний фотон обычно несуществен, подумайте о том, как вы себя чувствуете, когда идете голосовать. Вы знаете, что ваш голос вряд ли может изменить картину, если учесть голоса миллионов других людей, так что ваше голосование представляется потерей времени и хлопотами. Если не считать известного исключения во Флориде, штате неопределенности, обычно один голос теряется в общей куче. Даже несмотря на то что выбор осуществляется за счет совокупного учета отдельных голосов, один голос редко изменяет результат. (Проводя сравнение еще на шаг дальше, вы можете заметить, что только в квантовых системах, и во Флориде, которая ведет себя как квантовый штат[68], повторяющиеся измерения приводят к разным результатам.)
Неопределенность Гейзенберга
Волновая природа материи влечет за собой много противоречащих интуиции следствий. Перейдем от неопределенности на выборах к соотношению неопределенностей Гейзенберга, любимой теме бесед физиков и послеобеденных ораторов.
Немецкий физик Вернер Гейзенберг был одним из главных создателей квантовой механики. В своей автобиографии[69] он рассказывает, что когда в 1919 году он с товарищами был размещен в здании семинарии в Мюнхене и участвовал в борьбе с баварскими коммунистами, у него в голове начали рождаться первые революционные идеи об атомах и квантовой механике. Когда затихала стрельба, он залезал на крышу семинарии и читал диалоги Платона, в частности, «Тимей». Сочинения Платона убедили Гейзенберга, что «для того, чтобы интерпретировать материальный мир, нам необходимо что-то знать о его мельчайших составных частях».
Гейзенберг ненавидел внешние потрясения, сопровождавшие его в молодости; он предпочел бы возврат к «принципам прусской жизни, подчинению индивидуальных амбиций общему делу, скромности в личной жизни, честности и неподкупности, благородству и точности»[70]. Тем не менее, сформулировав соотношение неопределенностей, Гейзенберг безвозвратно изменил взгляды людей на мир. Вероятно, бурная эпоха, в которую жил Гейзенберг, породила в нем революционный подход если не к политике, то к науке2. Во всяком случае, мне кажется несколько забавным, что автор соотношения неопределенностей был человеком столь противоречивых взглядов.
Соотношение неопределенностей утверждает, что есть определенные пары величин, которые никогда не могут быть точно измерены в один и тот же момент времени. Это стало главным отличием от классической физики, в рамках которой предполагается, что, по крайней мере в принципе, все характеристики физической системы, например, координату и импульс, можно измерить с любой желаемой точностью.
Конкретные пары — это те, для которых имеет значение, какая из величин измеряется первой. Например, если вы измерили сначала положение, а затем импульс частицы (величина, определяющая как величину скорости, так и ее направление), вы получите другой результат по сравнению с тем, если сначала измеряется импульс, а затем положение. Такое невозможно в классической физике, и это, безусловно, отличается от того, к чему мы привыкли. Порядок измерений имеет значение только в рамках квантовой механики. И соотношение неопределенностей утверждает, что для двух величин, порядок измерения которых имеет значение, произведение их неопределенностей будет всегда больше, чем фундаментальная константа, а именно, постоянная Планка h (для самых любопытных, эта константа равна 6,582 · 10-25 ГэВ · с)3. Если вы настаиваете на том, чтобы знать очень точно положение частицы, вы не можете знать с той же точностью импульс, и наоборот. Не имеет значения, насколько точны ваши измерительные приборы и сколько раз вы повторяете измерения, — вы никогда не сможете одновременно измерить обе величины с очень большой точностью.
Появление постоянной Планка в соотношении неопределенностей имеет глубокий смысл. Постоянная Планка — это величина, возникающая только в квантовой механике. Напомним, что согласно квантовой механике квант энергии частицы с определенной частотой равен постоянной Планка, умноженной на эту частоту. Если бы миром правила классическая физика, постоянная Планка была бы равна нулю, и не было бы фундаментального кванта энергии.
Однако в истинном квантово-механическом описании мира постоянная Планка есть фиксированная, ненулевая величина. Именно это число характеризует неопределенность. В принципе любая отдельная величина может быть точно известна. Иногда физики, чтобы описать ситуацию, когда некоторая величина точно измерена и поэтому принимает точное значение, говорят о коллапсе волновой функции. Слово «коллапс» относится к форме волновой функции, которая уже не размыта, а принимает ненулевое значение в одном конкретном месте, так как вероятность получения при последующем измерении любого другого значения равна нулю. В этом случае, когда одна величина измерена точно, соотношение неопределенностей утверждает, что после измерения вы не можете знать вообще ничего о другой величине, образующей пару с измеренной величиной в соотношении неопределенностей. Вы получите бесконечную неопределенность значения этой другой величины. Конечно, если бы вы сначала измерили вторую величину, то первая величина стала бы для вас неизвестной. Иными словами, чем точнее вы знаете одну из величин, тем менее точным должно быть измерение другой.
Я не буду в этой книге углубляться в подробный вывод соотношения неопределенностей, однако попытаюсь тем не менее дать представление о его происхождении. Так как это несущественно для последующего изложения, вы можете сразу перейти к следующему разделу. Но, может быть, кому-то из вас захочется чуть больше узнать о тех рассуждениях, которые лежат в основе соотношения неопределенностей.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Книги похожие на "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Отзывы читателей о книге "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.", комментарии и мнения людей о произведении.



























