Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Описание и краткое содержание "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства." читать бесплатно онлайн.
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.
Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.
Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.
Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.
В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.
Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Две разные, но связанные частицы должны в рамках ТВО возникать совместно, так как слабое и сильное взаимодействия при высоких энергиях должны быть взаимозаменяемы. В этом заключается главная идея единой теории — все взаимодействия должны в конце концов стать одинаковыми. Таким образом, когда сильные и слабые взаимодействия объединяются, каждая частица, испытывающая слабое взаимодействие, в том числе хиггсовская частица, должна образовать пару с другой частицей, испытывающей сильное взаимодействие и обладающей взаимодействиями, аналогичными тем, которые есть у исходной хиггсовской частицы. Однако с новой частицей, участвующей в сильных взаимодействиях и связанной с хиггсовской частицей, возникает серьезная проблема.
Обладающая сильным зарядом частица-партнер хиггсовской частицы может одновременно взаимодействовать с кварком и лептоном, что может привести к распаду протона, даже более быстрому, чем предсказывает ТВО. Чтобы избежать слишком быстрого распада, сильно взаимодействующая частица, обмен которой между двумя кварками и двумя лептонами должен происходить для того, чтобы имел место распад протона, должна быть невероятно тяжелой. Из полученного в настоящее время предела на время жизни протона следует, что сильновзаимодействующий партнер хиггсовской частицы (если он существует в природе) должен иметь массу, сравнимую с масштабом масс ТВО, т. е. около одного миллиона миллиардов ГэВ. Если эта частица существует, то не будь она столь тяжелой, вы и эта книга распались бы прежде, чем вы дочитаете эту фразу.
Однако мы уже знаем, что для того чтобы придать слабым калибровочным бозонам измеряемые на опыте массы, обладающая слабым зарядом хиггсовская частица должна быть легкой (около 250 ГэВ). Таким образом, из экспериментальных ограничений следует, что масса хиггсовской частицы должна чудовищно отличаться от массы хиггсовского партнера, взаимодействующего сильным образом. Сильно заряженная хиггсовская частица, которая в рамках единой теории обладает очень похожими взаимодействиями, что и слабо заряженная хиггсовская частица, должна иметь совершенно другую массу, в противном случае мир не имел бы ничего общего с тем, который мы видим. Это колоссальное расхождение между двумя массами (одна в десять триллионов раз больше другой) очень трудно объяснить, особенно в рамках единой теории, в которой как слабо заряженная, так и сильно заряженная хиггсовские частицы имеют, по предположению, похожие взаимодействия.
В большинстве единых теорий единственный способ сделать одну частицу тяжелой, а другую — легкой, состоит во введении огромного подгоночного множителя. Нет никакого физического принципа, который предсказывал бы, что массы должны быть столь различны. Единственный способ заставить схему работать — это ввести очень аккуратно выбранное число. Это число должно иметь тринадцать точных значащих цифр, в противном случае либо протон будет распадаться, либо массы слабых калибровочных бозонов будут слишком велики.
Физики-частичники называют необходимую подгонку тонкой настройкой. Эта настройка возникает в том случае, когда вы подгоняете параметр, чтобы получить точно то значение, которое хотите. Слово «настройка» используется потому, что процесс напоминает настройку фортепианной струны, чтобы получить точно нужный звук. Но если вы хотите получить правильную частоту в несколько сотен герц с точностью в тринадцать значащих цифр, вы должны слушать звук в течение десяти миллиардов секунд, т. е. тысячу лет, чтобы убедиться, что все правильно. Точность в тринадцать значащих цифр достичь трудно.
Я могла бы привести и другие аналогии точной настройки, но поверьте, они покажутся вам надуманными. Например, рассмотрим очень большую фирму, в которой один сотрудник отвечает за расходы, а другой — за доходы. Допустим, что эти люди никогда друг с другом не общаются, но требуется, чтобы в конце года расходы почти в точности равнялись доходам, так чтобы на счету остались какие-то копейки, в противном случае фирму закроют. Да, это действительно надуманный пример. Нетрудно понять, почему. Никакие осмысленные ситуации не зависят от тонкой настройки, никто не хочет, чтобы его судьба (или судьба его бизнеса) зависела от столь маловероятных совпадений. Точно так же любая теория Великого объединения с легкой хиггсовской частицей сталкивается с такой проблемой зависимости. Очень маловероятно, что теория, в которой физические предсказания столь чувствительно зависят от параметра, является полной правдой.
Но единственный способ получить достаточно малую массу хиггсовской частицы в простейшей ТВО — это подогнать теорию. Модель ТВО не предлагает никакой хорошей альтернативы. Это серьезная проблема для большинства моделей, совершающих объединение в четырех измерениях, и многие физики, включая меня, из-за этого не уверены в унификации взаимодействий.
Но проблема иерархий еще хуже. Даже если вы хотите просто предположить, без какого-либо обоснования, что одна частица легкая, а другая необычайно тяжелая, вы все равно столкнетесь с проблемами, вызываемыми квантово-механическими поправками, или просто квантовым вкладом. Эти квантовые вклады должны добавляться к классической массе, чтобы определить истинную, физическую массу, которую должна иметь хиггсовская частица в реальном мире. И эти вклады в общем случае намного больше, чем та масса в несколько сотен ГэВ, которую требует хиггсовская частица.
Прежде чем перейти к следующему разделу, где обсуждаются квантовые вклады, основанные на понятии виртуальных частиц и квантовой механике, хочу предупредить вас, что интуитивно это будет сложно понять. Не пытайтесь искать классическую аналогию, так как то, чем мы собираемся заняться, представляет собой чисто квантово-механический эффект.
Квантовые вклады в массу хиггсовской частицы
В предыдущей главе было объяснено, почему в общем случае частица не может без изменений пролететь сквозь пространство. По дороге могут возникать и исчезать виртуальные частицы, оказывая влияние на путь исходной частицы. Квантовая механика утверждает, что мы всегда должны суммировать вклады от всех возможных путей в значение любой физической величины.
Как мы видели, такие виртуальные частицы приводят к тому, что интенсивность взаимодействий становится зависящей от расстояния, что было измерено и хорошо согласуется с предсказаниями. Те же типы квантовых вкладов, которые приводят к зависимости взаимодействий от энергии, влияют и на величину масс частиц. Но в отличие от интенсивностей взаимодействий, влияние виртуальных частиц на массу хиггсовской частицы противоречит тому, что эксперимент требует от теории. Квантовые вклады оказываются слишком большими.
Так как хиггсовская частица взаимодействует с тяжелыми частицами, масса которых достигает масштаба масс ТВО, ряд путей, по которым она перемещается, включает вакуум, выплевывающий виртуальную тяжелую частицу и ее античастицу, так что хиггсовская частица в процессе движения на время превращается в эти частицы (рис. 61). Тяжелые частицы без предупреждения возникают и исчезают в вакууме и влияют на движение хиггсовской частицы. Они — преступники, ответственные за большие квантовые поправки.
Квантовая механика утверждает, что если мы хотим определить массу, которой реально обладает хиггсовская частица, нам нужно добавить такие пути с виртуальными частицами к единственному пути без этих частиц. Проблема состоит в том, что пути, содержащие виртуальные тяжелые частицы, порождают вклады в массу хиггсовской частицы того же порядка, что и массы тяжелых частиц в ТВО, т. е. на тринадцать порядков величины больше желаемой массы. Все эти колоссальные квантово-механические вклады виртуальных тяжелых частиц нужно добавить к классическому значению массы хиггсовской частицы, чтобы получить физическое значение, получаемое при измерении и равняющееся приблизительно 250 ГэВ, что приведет к правильным значениям масс слабых калибровочных бозонов. Это означает, что хотя каждый отдельный вклад ТВО в массу на тринадцать порядков больше, чем нужно, когда мы сложим все эти огромные вклады, часть из которых положительна, а другая часть отрицательна, мы получим примерно 250 ГэВ. Если с хиггсовской частицей взаимодействует хотя бы одна виртуальная тяжелая частица, неизбежно возникает проблема.
Если, как в предыдущей главе, мы проведем аналогию между виртуальными частицами и сотрудниками некоего учреждения, например, Службой иммиграции и натурализации США, работа которых состоит в том, чтобы выявлять и откладывать документы от подозрительных лиц, то окажется, что вместо этого они занимаются тщательным изучением всех документов от всех лиц. Вместо двухуровневой системы, в которой часть документов быстро рассматривается, а другая часть задерживается, все документы рассматриваются одинаково. Аналогично, механизм Хиггса требует, чтобы «учреждение» виртуальных частиц оставляло часть частиц тяжелыми, но позволяло другим, в том числе хиггсовской частице, быть легкими. Вместо этого квантовые пути, включающие виртуальные частицы, как сверхусердные работники, дают сравнимые вклады в массы всех частиц. Итак, мы ожидаем, что все частицы, в том числе хиггсовская частица, должны быть такими же тяжелыми, как масштаб масс ТВО.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Книги похожие на "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства."
Отзывы читателей о книге "Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.", комментарии и мнения людей о произведении.