» » » » Генри Дьюдени - Кентерберийские головоломки


Авторские права

Генри Дьюдени - Кентерберийские головоломки

Здесь можно скачать бесплатно "Генри Дьюдени - Кентерберийские головоломки" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир. Редакция научно-популярной и научно-фантастической литературы, год 1979. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - Кентерберийские головоломки
Рейтинг:
Название:
Кентерберийские головоломки
Издательство:
Мир. Редакция научно-популярной и научно-фантастической литературы
Год:
1979
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Кентерберийские головоломки"

Описание и краткое содержание "Кентерберийские головоломки" читать бесплатно онлайн.



Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.

Книга доставит удовольствие всем любителям занимательной математики.






99. Двое посыльных. Сельский пекарь послал одного из своих подручных с запиской к мяснику в соседнюю деревню, а мясник в это же время послал своего подручного к пекарю. Один из посыльных шел быстрее другого, и они встретились за 720 ярдов от лавки пекаря. Каждый задержался на 10 минут в пункте своего назначения, а затем отправился в обратный путь; вновь они встретились за 400 ярдов от мясника. Как далеко друг от друга расположены лавки пекаря и мясника? Разумеется, каждый посыльный все время шел с постоянной скоростью.


100. На Рэмсгейтских песках. Тринадцать юнцов танцевали кружком на Рэмсгейтских песках. Видимо, они играли в игру под названием «Вокруг шелковичного дерева». Головоломка состоит в следующем. Сколько кружков они могут образовать при условии, чтобы ни один из них не держал дважды за руку (ни за правую, ни за левую) другого? Иными словами, ни у одного из ребят не должно быть дважды одинакового соседа.


101. Три автомобиля. Поуп[19] говорит нам, что случай – это всего лишь «направление, коего тебе не дано узреть». И в самом деле, мы порой сталкиваемся с замечательными совпадениями, которые происходят вопреки им присущей малой вероятности и наполняют нас чувством изумления.

Один из трех водителей, изображенных на рисунке, как раз столкнулся с таким странным совпадением. Он указывает двум своим приятелям на то, что три номера на их автомобилях содержат все цифры от 1 до 9 и 0, а также (и это еще более примечательно) на то, что если перемножить между собой номера первого и второго автомобилей, то получится номер третьего автомобиля.



Другими словами, 78, 345 и 26910 содержат все десять цифр, и 78х345 = 26910. Читатель сумеет найти много аналогичных множеств, состоящих из двузначного, трехзначного и пятизначного чисел, которые обладают той же особенностью. Но среди них лишь одно обладает тем свойством, что второе число является кратным первого. Приведенный пример не подходит, ибо 345 не делится без остатка на 78. Что это за три числа? Помните, что они должны быть соответственно двузначным, трехзначным и пятизначным.


102. Обратимый магический квадрат. Сможете ли вы образовать из шестнадцати различных чисел магический квадрат (суммы чисел вдоль каждой из его четырех вертикалей, каждой из четырех горизонталей и каждой из двух диагоналей должны быть одинаковыми), который оставался бы таковым, даже если перевернуть рисунок вверх ногами? Вы не должны использовать 3, 4 или 5, ибо эти цифры нельзя перевернуть вверх ногами; однако при определенном начертании 6 при такой операции превращается в 9, 9 – в 6, 7 – в 2, а 2 – в 7. Цифры 1, 8 и 0 переходят сами в себя. Помните, что при перевертывании квадрата постоянная сумма не должна меняться.


103. Метро. На рисунке вы видите план метро. Стоимость проезда на любое расстояние одинакова, пока вы не проехали дважды по одному и тому же участку пути во время той же поездки. Один пассажир, у которого масса свободного времени, ездит ежедневно из Л в F. Сколько различных путей он может выбрать при этом? Например, он может поехать прямым путем через А, В, С, D, Е, F или же он может избрать один из длинных путей вроде пути через А, В, D, С, В, С, Е, D, Е, F.



Стоит отметить, что между некоторыми станциями имеются дополнительные линии и, выбирая их, пассажир может варьировать свой полный путь. Многие читатели найдут эту маленькую задачку весьма запутанной, хотя ее условия очень просты.


104. Шкипер и морской змей. Мистер Саймон Софтлейг большую часть своей жизни провел между Тутин-Бек и Финчерч-Стрит, поэтому его морские познания были весьма ограниченными. Естественно, что, отправившись отдыхать на южное побережье, он решил воспользоваться этим случаем, чтобы их пополнить, и стал «выуживать» сведения у местных жителей.

– Я думаю, – обратился однажды утром мистер Софтлейг к жизнерадостному «просоленному» шкиперу, – вы много интересного повидали в бурных морях?

– Будь я проклят, сэр, немало! – сказал шкипер. – Наверное, вам никогда не приходилось видеть ванильный айсберг, или русалку, развесившую свои вещи для просушки на линии экватора, или голубокрылую акулу, гоняющуюся в воздухе за своей добычей, или морского змея…



– Вы в самом деле видели морского змея? Я считал, что их существование пока твердо не установлено.

– Твердо не установлено! Вы бы не говорили так, если бы увидели своими глазами одного из них. Впервые со мной это случилось, когда я плавал шкипером на «Соси Сэлли». Мы огибали мыс Горн с грузом креветок, взятым с тихоокеанских островов, когда, взглянув за борт, я увидел огромное длинное чудовище. Голова его торчала из воды, а глаза метали искры. Я тотчас приказал спустить шлюпку, а сам бросился вниз за саблей (той самой, которой я убил короля Чоуки, вождя дикарей, съевших нашего юнгу), и мы пустились в погоню. Ну так вот, короче говоря, когда мы поравнялись с этим змеем, я взмахнул своей саблей и, прежде чем вы успели бы сказать «Том Боулинг», рассек его на три части равной длины, которые мы и доставили на борт «Соси Сэлли». Что я с ними сделал? Продал парню из Рио. И что бы вы думали, он из них сделал? Покрышки для своего автомобиля – стоит больших трудов проколоть кожу морского змея.

– Насколько длинным было это существо? – спросил Саймон.

– Каждая часть в длину равнялась трем четвертым длины части, сложенным с тремя четвертями якорной цепи. Вот небольшая головоломка для вас, юный джентльмен. Сколько якорных цепей должен иметь в длину морской змей?


105. Благотворительное общество. После четырех с половиной месяцев тяжелой работы леди из одного благотворительного общества были так довольны тем, что лоскутное одеяло для дорогого помощника приходского священника наконец-то закончено, что на радостях все перецеловали друг друга, за исключением, разумеется, самого застенчивого молодого человека, поцеловавшего лишь своих сестер, за которыми он зашел, чтобы проводить их домой. Словом, было полно чмоканий – целых 144. Насколько дольше леди делали бы свою работу, если бы сестры упомянутого помощника приходского священника играли в теннис вместо того, чтобы посещать собрания благотворительного общества? Разумеется, мы должны принять, что леди посещали собрания регулярно, и я уверен, что все они работали одинаково хорошо. Взаимный поцелуй здесь считается за два «чмоканья».


106. Приключения улитки. Простой вариант головоломки о взбирающейся улитке знаком каждому. Мы знаем ее с детства, когда нам старались преподать урок того, что, подумав, ты в состоянии дать верный ответ. Вот популярный вариант головоломки.



Улитка поднимается по шесту высотой в 12 футов, причем каждый день она поднимается на 3 фута вверх, а каждую ночь соскальзывает на 2 фута вниз. Через какое время она доберется до верхушки шеста? Разумеется, мы ждем, что ответ равен 12 дням, ибо на самом деле улитка за каждые сутки продвигается на 1 фут. Но современного ребенка не так-то легко провести. Он отвечает, и довольно верно, что к концу девятых суток улитка оказывается в 3 футах от верхушки шеста и, следовательно, добирается до цели на десятый день, поскольку соскальзывания вниз не играют роли после того, как она достигнет верха.

Давайте, однако, рассмотрим первоначальный вариант этой истории. Жили-были два философа. Однажды они прогуливались в своем саду, когда один из них обнаружил весьма респектабельную представительницу вида Helix aspersa, настоящую альпинистку, совершающую рискованное восхождение по стене высотой в 20 футов. Изучая след, этот джентльмен установил, что улитка каждый день поднимается на 3 фута, а каждую ночь спит и соскальзывает вниз на 2 фута.

– Прошу, скажи мне, – спросил у него приятель, – сколько времени потребуется леди Улитке, чтобы добраться до верхнего края стены и спуститься вниз по другой стороне? Край стены, как ты знаешь, очень острый, так что, добравшись до него, она сразу же начнет спускаться, причем теперь уже за день она будет опускаться на такое же расстояние, на какое раньше поднималась, а ночью будет спать и соскальзывать вниз, как и раньше.

Быть может, мои читатели вместе с приятелями-философами захотят подсчитать точное число дней. Разумеется, в головоломках такого типа предполагается, что сутки делятся пополам на 12 дневных и 12 ночных часов.


107. Четыре принца. Владения одного восточного монарха представляли собой правильный квадрат. Однажды он обнаружил, что его четыре сына не только чинят козни друг против друга, но тайно бунтуют и против него самого. Выслушав своих советников, король решил, что не стоит заточать принцев в темницу, и распорядился отправить их в четыре угла страны, где каждому выделялась треугольная территория равной площади, границы которой принц не смел пересекать под страхом смерти. Королевский топограф столкнулся, естественно, с огромными трудностями, вызванными дикой природой этого края. В результате оказалось, что хотя каждому принцу и была выделена территория равной площади, но все четыре треугольных района оказались различны по форме; получилось нечто вроде того, что показано на рисунке.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Кентерберийские головоломки"

Книги похожие на "Кентерберийские головоломки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - Кентерберийские головоломки"

Отзывы читателей о книге "Кентерберийские головоломки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.