» » » » Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи


Авторские права

Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи

Здесь можно скачать бесплатно "Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи" в формате fb2, epub, txt, doc, pdf. Жанр: История, издательство Наука, год 1988. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи
Рейтинг:
Название:
История естествознания в эпоху эллинизма и Римской империи
Издательство:
Наука
Жанр:
Год:
1988
ISBN:
5-02-008048-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "История естествознания в эпоху эллинизма и Римской империи"

Описание и краткое содержание "История естествознания в эпоху эллинизма и Римской империи" читать бесплатно онлайн.



Рожанский Иван Дмитриевич. История естествознания в эпоху эллинизма и Римской империи.

Книга посвящена различным аспектам генезиса науки в эпоху раннего и среднего эллинизма и времен римского владычества. Естественнонаучные идеи мыслителей прошлого даны в тесном сопряжении с философскими, религиозными, вообще гуманитарными представлениями той эпохи.

Для философов, историков философии, всех интересующихся историей философии и историей науки.






Однако уже в конце I в. н. э. в Александрии появляются крупные ученые, работавшие в области математических наук. Прежде всего, это Менелай Александрийский — выдающийся астроном и математик, время жизни которого определяется тем фактом, что в 98 г. н. э., находясь в Риме, Менелай производил астрономические наблюдения, на которые ссылается Птолемей в «Альмагесте». О нем у нас еще пойдет речь в пятой главе настоящей книги, посвященной эллинистической астрономии. В истории математики основная заслуга Менелая состояла в том, что он явился основоположником сферической тригонометрии.

Другим замечательным математиком этой эпохи был Герон Александрийский. Ввиду практически полного отсутствия биографических данных о Героне датировка его жизни и деятельности долгое время представляла для историков науки почти неразрешимую задачу. В настоящее время в результате изысканий Нейгебауэра и других исследователей[124] можно считать установленным, что время жизни Герона падает примерно на вторую половину I в. н. э., т. е оказывается, что он был современником Менелая. Обширный список в большинстве своем не дошедших до нас сочинений Герона показывает, что это был исключительно разносторонний и плодовитый ученый. О его достижениях в области теоретической и прикладной механики будет рассказано в шестой главе настоящей книги, здесь же мы ограничимся характеристикой того места, которое он занял в истории математических наук.

Из математических работ Герона мы знаем лишь одну — «Учение об измерениях» (Μετρικά), рукопись которой была обнаружена в одной из константинопольских библиотек всего лишь в 1896 г. От других его сочинений в области математики до нас дошли лишь заглавия; это — комментарий к «Элементам» Эвклида и «Определения», представлявшие собой введение в элементарную геометрию. Трудно судить о том, в какой мере эти не сохранившиеся сочинения продолжали традиции классической греческой математики. Что же касается «Метрики», то она знаменовала собой резкий разрыв с этими традициями. В отличие от геометрической алгебры с ее строго логическими доказательствами в духе Архимеда или Аполлония из Перги мы встречаемся здесь с чем-то вроде энциклопедии вычислительной математики. Цель, которую ставил перед собой Герон в этом сочинении, состояла не столько в уяснении логической взаимозависимости математических понятий и образов, сколько в изложении методов вычисления, которые могут быть применены в измерительной или инженерной практике. «Метрика» делится на три книги: в первой из них приводятся методы измерения плоских и некоторых искривленных поверхностей, во второй содержатся формулы для вычисления поверхностей и объемов трехмерных тел, а третья включает задачи на деление поверхностей и объемов в заданных отношениях. В целом «Метрика» представляет собой собрание задач, логически не связанных друг с другом и решаемых не в общем виде, а на конкретных числовых примерах. Это, впрочем, но мешает Герону в отдельных случаях приводить строгие доказательства или ссылаться на соответствующие теоремы из «Элементов» Эвклида или «Конических сечений» Аполлония из Перги. Так, например, строго доказывается известная «Формула Герона» для вычисления площади треугольника, когда даны длины трех его сторон. В других случаях приводятся приближенные формулы, которые излагаются догматически и лишь иллюстрируются числовыми примерами (к ним относится формула для приближенного извлечения корня из целого числа, не являющегося точным квадратом другого числа).

Приближенные формулы и методы вычисления, приводимые в «Метрике», не были, разумеется, собственным изобретением Герона (что, конечно, не исключает возможности его личного вклада в отдельных случаях). В большей своей части они, по-видимому, уже издавна использовались греками в практике инженерной и строительной деятельности. Частично же они могли быть заимствованы греческими мастерами и строителями у культурных народов Востока; несомненно, что вероятность таких заимствований сильно возросла после походов Александра и включения стран Ближнего и Среднего Востока в орбиту греческого мира. Мы знаем, что вавилонские математические тексты представляли собой, как правило, сборники конкретных задач, для решения которых задавались алгоритмы, иногда достаточно сложные. Эти алгоритмы не выводились с помощью математической дедукции (которая была чужда вавилонской математике); они задавались догматически и проверялись в ходе их практического применения. Нечто подобное мы находим и в «Метрике» Герона.

 «Высокая» греческая математика, относившаяся пренебрежительно ко всякого рода практической деятельности, к τέχνη, игнорировала приближенные формулы и методы вычисления. Заслуга Герона состояла в том, что он свел математику с неба на землю и показал, что между строгой дедуктивной математикой и вычислительными методами, применяемыми в практической деятельности человека, не существует непроходимой пропасти.

Две грандиозные фигуры доминируют в греческой науке II в. н. э. Это знаменитый врач и физиолог Клавдий Гален и великий астроном, завершитель геоцентрической системы мира, Клавдий Птолемей. О Галене мы уже рассказали в разделе данной главы, посвященном александрийской медицине, с которой Гален был связан прежде всего генетически — в порядке научной преемственности (его основным местопребыванием в зрелую пору жизни стал, как известно, Рим).

Что же касается Птолемея, то его важнейшие достижения относятся к области астрономии и — в меньшей мере — к географии и к оптике; об этих достижениях будет рассказано соответственно в четвертой, пятой и шестой главах. Кроме того, Птолемей был прекрасным математиком, хотя математика была ему нужна главным образом для решения астрономических и картографических задач. Но он не чуждался и чисто математической проблематики, о чем свидетельствует то, что им было написано сочинение о параллельных линиях и о пятом постулате Эвклида (о чем сообщает Прокл). Текст этого сочинения утрачен, и сколько-нибудь детальными сведениями о его содержании мы не располагаем (Прокл проводит якобы птолемеево доказательство пятого постулата Эвклида, содержащее грубую ошибку).

Следует отметить, что в «Альмагесте» Птолемей широко пользуется заимствованной у вавилонян шестидесятиричной системой нумерации, применяя ее не только для дуг круга, но также для отрезков и площадей. Таким образом, «минуты», «секунды» и т. д. становятся у него отвлеченными числами, не связанными с каким-либо определенным видом величины. Любопытно, что в его записи дробей существовал символ о («омикрон»), служивший для обозначения отсутствия одного из шестидесятиричных разрядов. Это — первое появление нуля в европейской математической литературе.

Работы Менелая, Герона, Птолемея показывают, что в Ι—II вв. н. э. в Александрии происходит возрождение математических наук. При этом обращает на себя внимание следующее обстоятельство: если в IV–III вв. центральным направлением, разрабатывавшимся александрийскими математиками, была геометрическая алгебра, то после Аполлония из Перги (II в.) это направление заходит в тупик и теперь заметный прогресс наблюдается в прикладной математике (приближенные вычисления) и в разделах, связанных с астрономией (сферическая тригонометрия), картографией и оптикой. То, что этот прогресс не получил дальнейшего развития в античную эпоху, зависело не от внутренних закономерностей развития науки, а от внешних условий, оказавших крайне неблагоприятное воздействие на научную деятельность того времени, и в частности на судьбу александрийской научной школы.

Эти неблагоприятные условия дали себя знать уже начиная с конца II в. н. э. Для Римской империи III век н. э. был веком политического развала и социального разложения. После смерти императора Коммода (в 192 г.) начинается ожесточенная борьба за императорский трон между сенатом и различными армейскими группировками. В период со 192 по 284 год на римском престоле сменилось 22 императора, большинство которых погибло насильственной смертью. В подавляющем числе случаев эти монархи были грубыми, необразованными временщиками, которым не было никакого дела до науки и культуры и основная забота которых состояла в том, чтобы как можно дольше продержаться на троне и хотя бы на время отразить врагов, наседавших на империю со всех сторон. На севере, в Галлии, это были франки и алеманны, на северо-востоке, на Дунае — готы, сарматы и маркоманны, в Азии — новая персидская держава Сассанидов. В различных частях империи вспыхивают восстания крестьян, колонов и рабов, усиливаются центробежные тенденции, приводящие к возникновению новых государственных образований, которые раздуваются, а затем лопаются как мыльные пузыри. Одним из таких государств стала Пальмира, центром которой был одноименный город — оазис, расположенный на перекрестке торговых путей в восточной части Сирийской пустыни. В 60-е годы III в. н. э. Пальмира объединила под своей властью всю


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "История естествознания в эпоху эллинизма и Римской империи"

Книги похожие на "История естествознания в эпоху эллинизма и Римской империи" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Иван Рожанский

Иван Рожанский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи"

Отзывы читателей о книге "История естествознания в эпоху эллинизма и Римской империи", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.