» » » » Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью


Авторские права

Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью

Здесь можно купить и скачать "Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Livebook/Гаятри, год 2010. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
Рейтинг:
Название:
(Не)совершенная случайность. Как случай управляет нашей жизнью
Издательство:
неизвестно
Год:
2010
ISBN:
978-5-9689-0171-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "(Не)совершенная случайность. Как случай управляет нашей жизнью"

Описание и краткое содержание "(Не)совершенная случайность. Как случай управляет нашей жизнью" читать бесплатно онлайн.



В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.

Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.






Если бросить один кубик, шансы того, что выпадет любая конкретная цифра, равны 1 из 6. Однако если бросить два кубика, шансы в сумме уже не равны. Например, для суммы кубиков, равной 2, существует 1 шанс из 36, однако шанс увеличивается в два раза, если сумма равна 3. Причина в том, что сумму 2 можно получить только одним способом: подбросив два кубика, которые выпадут единицами, но сумму 3 можно получить уже двумя способами: подбросив два кубика, которые выпадут единицами; подбросив кубики так, чтобы выпали 1 и 2 (или 2 и 1). Таким образом, мы продвигаемся еще дальше в понимании случайных процессов, которые и составляют тему данной главы: развитие систематических методов анализа числа способов тех или иных исходов.


Ошибку герцога можно обнаружить, если подойти к проблеме с позиций талмудиста: чем пытаться объяснить, почему 10 выпадает чаще, чем 9, лучше задаться вопросом: а почему 10 должна выпадать чаще, чем 9? Появляется соблазн — поверить, что два кубика должны выпадать в сумме 10 и 9 с одинаковой частотой: и 10, и 9 можно представить 6 способами, в зависимости от того, как упадут три кубика. Для 9 можно записать такие способы следующим образом: (621), (531), (522), (441), (432) и (333). Для 10 это (631), (622), (541), (532), (442) и (433). Применяя закон Кардано о пространстве элементарных событий, получаем: вероятность благоприятного исхода равна соотношению исходов, которые благоприятны. Сумма 9 и 10 может быть составлена теми же 6 способами. Тогда почему одно вероятнее другого?

А потому, что, как я уже говорил, закон пространства элементарных событий в его первоначальной форме применим только к тем исходам, которые обладают равной вероятностью. Вышеприведенные же комбинации таковыми не являются. К примеру, исход (631), то есть бросок, в результате которого выпадают 6, 3 и 1, обладает шестикратной вероятностью по сравнению с исходом (333), поскольку хотя и существует один способ, в результате которого выпадают три 3, способов, в результате которых получаются 6, 3 и 1, целых шесть: можно получить 6, затем 3 и 1, или же сначала 1, затем 3, а потом уже 6, ну и так далее. Представим запись исхода, где порядок бросков записывается трехзначными, разделенными запятой комбинациями. Тогда все то, что мы только что сказали, можно выразить короче: исход (631) состоит из возможностей (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3) и (6,3,1), а исход (333) состоит только лишь из (3,3,3). Как только мы упростили запись таким вот образом, стало понятно: исходы одинаково вероятны, и можно применить закон. Поскольку существует 27 способов получить общую сумму в 10, бросая три кости, но лишь 25 способов получить сумму в 9, Галилей заключил: при броске трех костей вероятность выпадения 10 равна 27/25, то есть около 1,08 раза больше.

Решая поставленный перед ним вопрос, Галилей косвенным образом применил следующий важный принцип: «Вероятность события зависит от числа его исходов». Ничего удивительного в самом утверждении нет. Удивительно том, насколько обширен эффект, и насколько трудно его подсчитать. Предположим, вы даете 25 шестиклассникам список из 10 вопросов, на которые надо ответить быстро, не задумываясь. Подсчитаем возможные результаты одного конкретного ученика: он отвечает на все вопросы правильно; отвечает на 1 вопрос неправильно — тут возможны 10 вариантов, потому как вопросов 10; отвечает на 2 вопроса неправильно — возможны 45 вариантов, потому как вопросы группируются в 45 пар, и так далее. В результате в среднем в группе студентов, пытающихся угадать правильные варианты ответов, на каждого студента, который угадает 100% правильных ответов, приходится около 10 студентов, которые дадут 90% правильных ответов, и 45 студентов, которые дадут 80% правильных ответов. Шансы получить около 50 баллов, конечно, все же выше, но в классе из 25 учеников вероятность того, что хотя бы один ученик получит 80 баллов или выше, если все ученики отвечают наугад, равна 75%. Так что если вы преподаватель со стажем, то наверняка в вашей многолетней практике среди всех учеников, которые являлись на урок неподготовленными и более-менее угадывали ответы на контрольной работе, были и такие, которые умудрялись в итоге получить четверки или даже пятерки.

Несколько лет назад в Канаде проводилась государственная лотерея, и когда устроители решили вернуть накопившиеся призовые деньги, за которыми никто так и не пришел, они на собственном горьком опыте убедились в том, как важен тщательный подсчет{68}. Они приобрели 500 машин в качестве бонусов и запрограммировали компьютер таким образом, чтобы из 2,4 млн подписчиков на лотерейные билеты машина произвольно выбрала 500 счастливчиков. Затем список был опубликован. К смущению устроителей лотереи, один господин заявил (надо заметить, справедливо), что выиграл две машины. Устроителям было чему изумиться: из 2,4 млн номеров компьютер вслепую выбрал один и тот же номер дважды. Как могло такое случиться? Может, ошибка в программе?

Задача с подсчетом номеров билетов, с которой столкнулись устроители лотереи, ничем не отличается от задачи с днями рождения: сколько в группе должно быть людей, чтобы встретились два человека с одинаковым днем рождения (при этом предполагается, что одинаково возможны любые дни)? Большинство скажут, что ответ — количество дней в году, поделенное пополам, то есть что-то около 183. Но ответ этот можно счесть правильным для совсем другого вопроса: сколько людей с разными днями рождения должны присутствовать в группе, чтобы день рождения одного из них совпал с вашим? Если не заложено никаких ограничений относительно того, у каких именно двух человек дни рождения должны совпасть, то факт того, что существует множество возможных пар людей, дни рождения которых могли бы совпасть, коренным образом меняет дело. И число таких людей на удивление мало: всего 23. Если вернуться к канадской лотерее, где выборка производилась из 2,4 млн билетов, окажется, что необходимо гораздо больше, чем 500 номеров, чтобы номер повторился. И тем не менее исключать такую возможность не стоит. Шансы совпадения фактически равны примерно 5%. Цифра небольшая, однако стоило ее принять во внимание и запрограммировать компьютер таким образом, чтобы он тут же вычеркивал из списка каждый выбранный номер. Да, а того счастливчика, который оказался обладателем двух машин, от одной попросили отказаться. Только он не согласился.

А вот еще один загадочный случай, связанный с лотереей и многих удививший; произошел он в Германии 21 июня 1995 г.{69} Проводилась лотерея под названием «Лото 6/49», означавшая, что шесть выигрышных чисел нужно выбрать из чисел от 1 до 49. В день объявления результатов были названы выигрышные числа: 15–25–27–30–42–48. Точно такая же последовательность уже выпадала ранее, 20 декабря 1986 г. Впервые за 3,016 выборок выигрышная последовательность повторилась. Каковы шансы такого повтора? Вовсе не такие уж и плохие, как вам может показаться. Если использовать математический подход, окажется, что шанс повтора равен примерно 28%.

Поскольку в случайном процессе число исходов события и определяет его вероятность, главный вопрос в следующем: как подсчитать число исходов того или иного события? Похоже, Галилей не проникся всей значимостью подобного вопроса. В своем исследовании случайностей дальше задачи о костях он не пошел, а в начале работы упомянул, что пишет об игральных костях только «по обязанности»{70}. В 1633 г. в «благодарность» за пропаганду нового научного подхода Галилей был осужден Инквизицией. Однако наука и теология давно уже разошлись, и теперь ученые анализируют вопрос «как?», а богословы, облегчая жизнь ученым, размышляют над вопросом «почему?». Пройдет совсем немного времени, и ученый нового поколения, с юности воспринявший новую научную философию Галилея, проведет анализ вероятности и достигнет новых высот, поднявшись на такой уровень, без которого большая часть современной науки была бы попросту невозможна.


Научная революция разворачивалась, и границы теории случайности ширились от Италии к Франции, где ученые нового типа, подвергавшие сомнению Аристотеля и следовавшие Галилею, совершали еще более глубокие открытия, нежели Кардано или сам Галилей. На этот раз важность нового труда будет признана, он всколыхнет всю Европу. И хотя новые идеи будут проиллюстрированы все теми же азартными играми, первый ученый нового типа окажется математиком, впоследствии ставшим игроком, в противоположность Кардано, игроку, впоследствии ставшему математиком. Звали этого ученого Блез Паскаль.

Паскаль родился в июне 1623 г. в Клермон-Ферране, находившемся в 400 км от Парижа. Отец Блеза разглядел одаренность сына, семья переехала в Париж, и в возрасте тринадцати лет Блез был представлен недавно созданному кружку, который сами его члены называли Академией Мерсенна — по имени францисканского монаха-основателя. В кружок Мерсенна входили прославленный философ-математик Рене Декарт и гениальный математик-любитель Пьер де Ферма. Все они, представлявшие собой диковинную смесь блистательных умов и крайне высокого самомнения, вместе с Мерсенном, помешивавшим это «варево», оказали на юного Блеза большое влияние. Блез подружился с Ферма и Декартом, воспринял новый научный метод. «Пусть все ученики Аристотеля… — писал он, — признают: истинный учитель есть эксперимент, ему надлежит внимать при изучении Физики»{71}.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "(Не)совершенная случайность. Как случай управляет нашей жизнью"

Книги похожие на "(Не)совершенная случайность. Как случай управляет нашей жизнью" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Леонард Млодинов

Леонард Млодинов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью"

Отзывы читателей о книге "(Не)совершенная случайность. Как случай управляет нашей жизнью", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.