» » » » Владимир Кирсанов - Научная революция XVII века


Авторские права

Владимир Кирсанов - Научная революция XVII века

Здесь можно скачать бесплатно "Владимир Кирсанов - Научная революция XVII века" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1987. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Кирсанов - Научная революция XVII века
Рейтинг:
Название:
Научная революция XVII века
Издательство:
Наука
Год:
1987
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Научная революция XVII века"

Описание и краткое содержание "Научная революция XVII века" читать бесплатно онлайн.



Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.






Затем Галилей несколько усложняет чертеж, введя горизонтальные отрезки OD и РЕ, представляющие максимальную скорость, приобретенную телом к моменту D и Е соответственно. Для доказательства теоремы он пользуется сперва правилом средней скорости. Слегка модернизируя запись и введя vDcp и vEср, обозначающие соответственно среднюю скорость движения к моменту D и Е, получаем: MH=vEср∙AE, H=vDcp∙AD; откуда MH/LH =

(vEср/vDcp)∙(AE/AD), но

и последнее отношение равно: PE/OD = AE/AD, т. е. скорости пропорциональны времени движения; тогда, с одной стороны, MH/LH = (vEср/vDcp)∙(AE/AD), а с другой (vEср/vDcp) = PE/OD = AE/AD.

Комбинируя эти две пропорции, получаем: MH/LH = (AE/AD)∙ (AE/AD) = AE2/AD2, «следовательно, расстояния относятся, как квадраты промежутков времени, что и требовалось доказать».

После этого легко доказывается, что если «скорость возрастает в равные промежутки времени как простой ряд последовательных чисел, то расстояния, пройденные за те же промежутки времени, относятся между собой как последовательные нечетные числа» [16, II, с. 251]. Этот результат, который Галилей приписывает исключительно себе, на самом деле был получен ранее средневековыми физиками, но они опять же не применяли его к исследованию реального движения и не увидели в нем квадратичного закона падения, легко из этого результата получаемого.

Дальнейшие беседы Третьего дня касаются проблемы движения тел по наклонной плоскости, и получающиеся результаты являются следствиями установленного ранее закона падения. Среди них имеются два замечательных утверждения, первое из которых относится к проблеме наискорейшего спуска — одной из наиболее знаменитых задач конца XVII в., а второе содержит наиболее близкую к современной формулировку принципа инерции. Задача наискорейшего спуска может быть сформулирована так: по какой траектории, соединяющей две точки, находящиеся на разных высотах, должно двигаться тело, чтобы переместиться из верхней точки в нижнюю за минимальное время? Постановка и решение этой проблемы положили начало вариационному исчислению. Инфинитезимальными методами было показано, что брахистохроной, т. е. линией наискорейшего спуска, будет не отрезок прямой, соединяющей обе точки, а проходящая через них циклоида. Решение было получено благодаря усилиям самых выдающихся математиков эпохи, включая Иоганна (в первую очередь) и Якоба Бернулли, Лейбница, Лопиталя, Гюйгенса и Ньютона. Галилей близко подошел к правильному результату и в замечании к теореме XXII указал, «что быстрейшее движение от одной конечной точки до другой происходит не по кратчайшей линии, какой является прямая» [16, II, с. 300]. Без помощи методов дифференциального исчисления он, естественно, не мог установить, что траекторией спуска является дуга циклоида, вместо этого он говорит о дуге окружности.

Другое замечание, содержащееся в задаче IX, еще более интересно. Оно касается существа понятия движения и гласит, «что степень скорости, обнаруживаемая телом (при движении) ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними» [16, II, с. 282]. Это утверждение определяет фундаментально новый подход к проблеме движения и покоя, получивший в дальнейшем исчерпывающую разработку в трудах Декарта и Ньютона. До сих пор покой и движение рассматривались как категории, имеющие различный онтологический статус, покой понимался как состояние, естественное для тела и не нуждающееся ни в какой внешней причине. Напротив, движение всегда подразумевало внешнюю причину, необходимо его обусловливавшую. «Естественные» движения надлунных сфер Аристотеля не идут в расчет, поскольку для земной физики они всегда являлись недостижимой абстракцией. Разрушение Галилеем дихотомии земной и небесной физики, естественных и насильственных движений неизбежно должно было привести к изменению точки зрения на движение как таковое. В процитированном выше утверждении Галилея это продемонстрировано с наибольшей ясностью: равномерное движение — так можно перефразировать его слова — ненарушимо лежит в природе тела (этим самым равномерному движению придается тот же онтологический статус, что и покою), в то время как внешние причины могут вызывать ускорение или замедление тела (в этом соблазнительно усмотреть предпосылки ньютоновой концепции силы.

Центральный результат Четвертого дня «Бесед» — закон параболического движения снаряда. Благодаря открытиям Дрейка мы знаем теперь, что Галилей пришел к формулировке этого закона еще в 1608 г., однако, по-видимому, лишь много лет спустя он обрел в его глазах концептуальную доказательность. Косвенным подтверждением этого факта может служить известный отрывок из «Диалога», в котором Галилей утверждает, что падающее тело будет описывать полуокружность, оканчивающуюся в центре Земли. Правда, необходимо отметить, что, поскольку построение полуокружности в данном месте «Диалога» играло второстепенную роль, Галилей мог выбрать окружность из соображений большей простоты и наглядности, с другой стороны, у Галилея никогда не было законченной концептуальной механической системы, и поэтому, естественно, что он мог вводить в обсуждение различные доказательства, часто и не согласующиеся между собой. Наконец, «Диалог» в гораздо большей степени был пропагандистским трактатом, чем «Беседы», где главный акцент делался на математическое доказательство, а не на красноречивое убеждение. Различие между двумя книгами хорошо определил Лодовико Джеймонат, сказав, что «Беседы» «в отличие от „Диалога" не являются манифестом коперниканства, скорее они являются трудом, написанным целиком в рамках нового коперниканского направления науки, углубляющим ее основы и расширяющим ее применение» [12, с. 177].

В Четвертом дне «Бесед» Галилей дает ясные и исчерпывающие формулировки тех принципов, которые косвенно или неявна содержатся в дискуссиях «Диалога». В теореме II он постулирует принцип независимости и сложения движений: «Если какое-либо тело движется равномерно двойственным образом, а именно, горизонтально и вертикально, то импульс, или момент его сложного движения равен в потенции совокупности моментов первоначальных движений» [16, II, с. 315]. Выражение «равен в потенции», очевидно, соответствует временному «равен геометрической сумме», поскольку Галилей снабжает доказательства данного утверждения рисунком, изображающим векторный треугольник. Тот же принцип применяется им и для сложения неравномерного движения с равномерным, причем здесь также утверждается, «что такие движения и скорости слагаются, но не мешают друг другу» [16, II, с. 309]. Это положение кажется Галилею настолько фундаментальным, что он вначале постулирует его для смешанных движений, и лишь потом — для равномерных. Поэтому основной результат дня содержится в самой первой теореме: «Теорема I. Предложение I. При сложном движении, слагающемся из равномерного горизонтального и естественно-ускоренного движений, бросаемое тело описывает полупараболу» [16, II, с. 305].

Галилей пришел к этому выводу давно, но тем не менее, он: еще долго не решался его опубликовать, так как теоретическая основа закона была ему не вполне ясна. В «Диалоге» он основывается на довольно туманном тезисе из анализа неделимых, который даже ему самому не кажется убедительным, и не дает ясной формулировки. Но он отчетливо понимал всю важность своего открытия и столь ревниво относился к вопросу о приоритете. «Диалог» был закончен в январе 1630 г., а два года спустя, одновременно с выходом его в свет, Кавальери опубликовал правильный закон движения снаряда в своей книге «Зажигательное зеркало» (Болонья, 1632). Галилей был совершенно вне себя, как показывает его письмо к Чезаре Марсили:

«Не скрою от вашего превосходительства, что известие едва ли меня обрадовало — видеть, что первый плод более, чем сорокалетних трудов, большую часть которых я открыл под большим секретом вышеназванному Отцу (т. е. Кавальери.— В. К.), должен быть отнят у меня, и что я лишен той славы, которую я столь страстно желал и надеялся получить после столь долгих усилий; ибо действительно первым моим намерением, которое привело меня к размышлению над движением, было найти эту линию, и хотя я смог продемонстрировать это, я знаю, как много несчастий я претерпел, прежде чем прийти к этому выводу» [28, III, с. 1278]. Кавальери был чрезвычайно огорчен, что он явился причиной столь резкого неудовольствия, выраженного его учителем, и немедленно написал, что, во-первых, он многим обязан Галилею и Кастелли, о чем он неоднократно говорит в этой книге, экземпляр которой он послал Галилею, во-вторых, каждому известно, что открытие параболической траектории принадлежит Галилею, и сам Кавальери был убежден, что тот уже давно опубликовал свое открытие, почему он и упомянул об этом в «Зажигательном зеркале». Галилей удовлетворился ответом Кавальери, и таким образом конфликт был улажен. Отношения были полностью восстановлены, и в «Беседах» уже говорится о Кавальери как о новом Архимеде.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Научная революция XVII века"

Книги похожие на "Научная революция XVII века" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Кирсанов

Владимир Кирсанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Кирсанов - Научная революция XVII века"

Отзывы читателей о книге "Научная революция XVII века", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.