» » » » Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции


Авторские права

Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Здесь можно купить и скачать "Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
Рейтинг:
Название:
Логика случая. О природе и происхождении биологической эволюции
Издательство:
неизвестно
Жанр:
Год:
2014
ISBN:
978-5-227-04982-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Логика случая. О природе и происхождении биологической эволюции"

Описание и краткое содержание "Логика случая. О природе и происхождении биологической эволюции" читать бесплатно онлайн.



В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.

Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.






Характерные геномные профили бактерий и архей с различными стилями жизни и неизоморфное отображение генного и функционального пространств

Одной из самых больших надежд, связанных со сравнительной геномикой, является возможность, по крайней мере в принципе, определить «геномные профили» организмов с резко отличающимися стилями жизни (фенотипами), то есть наборы генов, которые необходимы и достаточны для поддержания этих стилей жизни. В имеющейся в настоящее время и быстро растущей коллекции геномов прокариот различные стили жизни часто представлены множественными, сильно отличающимися геномами – таким образом похоже, что подошло время всерьез начать изучение геномно-фенотипических связей. До сих пор в этом направлении можно констатировать лишь весьма скромный успех. Когда стиль жизни связан с хорошо изученным биохимическим путем, таким как у метаногенов или у фотосинтезирующих организмов, идентификация геномного профиля может быть относительно простой задачей. Но даже в этом случае анализ генов, кодирующих белки, вовлеченные, например, в фотосинтез, демонстрирует сложное переплетение признаков, специфичных для стиля жизни и для конкретного таксона. Наиболее полный набор генов для фотосинтеза был зафиксирован у цианобактерий, в то время как другие группы фотосинтезирующих бактерий обладают различными подмножествами этого набора генов (Mulkidjanian et al., 2006).

Геномные профили более сложных фенотипов, таких как термофили или устойчивость к радиации, оказались намного более неуловимыми. Возможно, наиболее настойчивые попытки были посвящены поиску сигналов термофильной адаптации. Примечательно, что был обнаружен один ген, присутствующий во всех секвенированных геномах гипертермофилов, но полностью отсутствующий у мезофилов, и продукт этого гена – белок, абсолютно необходимый для репликации ДНК при экстремально высоких температурах, обратная гираза (Forterre, 2002). Кроме того, геном умеренного термофила Thermus thermophilus (штамм HB27) содержит псевдоген обратной гиразы, в то время как близкородственный ему штамм HB8 содержит работоспособный ген обратной гиразы, что демонстрирует процесс избавления от обратной гиразы после вероятного перехода от гипертермофильного к умеренно термофильному стилю жизни (Omelchenko et al., 2005). Однако поиск других генов, специфичных для термофилов, принес ограниченные результаты. Иных генов, кроме обратной гиразы, показывающих явную корреляцию их присутствия-отсутствия с (гипер) термофильностью, обнаружено не было; для гипертермофильных архей и бактерий нашлось лишь несколько генов, которые существенно чаще присутствовали в их геномах по сравнению с геномами мезофилов (Makarova et al., 2003). Кроме того, было предпринято много попыток определить характерные признаки фенотипа термофилов на уровне нуклеотидных и белковых последовательностей и структур. Хотя эти исследования выявили несколько признаков, потенциально характерных для белков термофилов, таких как высокая плотность заряда и большее, чем обычно, представительство дисульфидных мостиков, реальная значимость каждого из этих признаков остается неопределенной (Beeby et al., 2005). На филогенетических деревьях высококонсервативных генов (см. гл. 6) термофилы часто группируются в одном кластере с мезофилами – так, белки бактерии Thermus группируются вместе с их гомологами из мезофильной бактерии Deinococcus (вспомните, например, известную полимеразу Taq, незаменимое орудие генной инженерии). Эти факты показывают, что общая эволюционная история оказывает намного более сильное влияние на белковые последовательности, чем термофильные (и другие) адаптации. Итоговый вывод подобных исследований заключается в том, что сравнительная геномика до сих пор не в состоянии выявить «секреты» (гипер)термофильного стиля жизни. (Интуитивно можно было бы подозревать, что должна быть существенная разница между геномами, кодирующими организмы с оптимальной температурой роста, превышающей 95 °C, и теми, для которых она составляет 37 °C.)

История поиска особенностей геномов, коррелирующих с экстремальной устойчивостью к радиации и высыханию, может быть даже более показательна. Некоторые бактерии и археи, лучше всего из которых описана бактерия Deinococcus radiodurans, демонстрируют сопротивляемость экстремальному уровню радиации, что, как считается, является побочным эффектом их адаптации к высыханию. Всесторонний анализ генома D. radiodurans напрямую не выявил никаких уникальных признаков генома или систем репарации ДНК, которые могли бы объяснить исключительную способность этих организмов переносить повреждения, вызываемые радиацией, хотя были идентифицированы гомологи белков растений, использующиеся для повышения сопротивляемости высыханию и в то же время не обнаруженные ни у каких других бактерий (Cox and Battista, 2005; Makarova et al., 2001a). Deinococcus radiodurans является популярной экспериментальной моделью, поэтому для описания реакции этой бактерии на высокие дозы облучения впоследствии были предприняты исследования процессов транскрипции и особенностей состава ее белков. Эти исследования возбудили определенный интерес, так как было зафиксировано существенное увеличение экспрессии некоторых экспериментально не исследованных генов, кодирующих белки с предсказанной ролью в процессах, потенциально связанных с радиационной устойчивостью, таких как репарация двойных разрывов в молекулах ДНК (Liu et al., 2003). Однако нокаут этих генов не повлиял на сопротивляемость радиации, в то время как нокаут нескольких других генов, которые не кодируют никаких известных доменов и не экспрессируются на повышенном уровне при облучении, делал организм чувствительным к радиации (Blasius et al., 2008; Cox and Battista, 2005; Makarova et al., 2007a). Сравнительный анализ двух родственных устойчивых к радиации бактерий D. radiodurans и D. geothermalis не только не смог разрешить проблему геномных особенностей, определяющих устойчивость к радиации, но даже еще более запутал ее (Makarova et al., 2007a). Никаких генов, имеющих явное отношение к сопротивляемости радиации, которые бы были уникальными для этих устойчивых бактерий, открыто не было. Более того, ортологи многих генов D. radiodurans, экспрессия которых усиливается в условиях повышенной радиации, попросту отсутствуют у D. geothermalis. Тщательное сравнение структуры оперонов и предполагаемых регуляторных областей в двух геномах Deinococcus позволило предсказать регулон, ответственный за устойчивость к радиации (Makarova et al., 2007a). Однако роль большинства генов, составляющих этот предсказанный регулон, в обеспечении устойчивости к радиации и высыханию остается невыясненной. Главные свойства генома, определяющие устойчивость к радиации, по-прежнему неуловимы, и растет количество свидетельств, демонстрирующих, что важная роль при этом принадлежит генам, которые повышают устойчивость неожиданными косвенными способами, такими как регулирование внутриклеточной концентрации двухвалентных катионов, оказывающих влияние на степень разрушения белков, вызванного облучением или высыханием (Daly, 2009).

Рис. 5–8. Неизоморфное, многозначное отображение геномного и функционального пространств.

Единственный вывод, который можно сделать в рамках текущего состояния дел по поводу связей между геномом и фенотипом у прокариот, заключается в том, что эти связи являются многогранными, и конкретные наборы генов, ответственных за формирование сложных фенотипов, идентифицировать непросто, несмотря на существование явных генов-сигнатур, связанных с определенными стилями жизни (такими как обратная гираза в случае гипертермофильности). Сложность соотношения геном – фенотип может быть представлена в виде неизоморфного многозначного отображения между геномным и функциональным пространствами прокариот (Koonin and Wolf, 2008b). Каждый ген плейотропен (связан с множеством функций), и каждая функция мультигенна (связана со многими генами; см. рис. 5–8). Мы пришли к этому важному выводу при анализе геномов прокариот, но, без сомнения, он отражает общее правило отсутствия детерминизма при отображении генотип – фенотип (см. гл. 13).

Археи и бактерии в свете сравнительной геномики: как же быть с прокариотами?

Сам термин и концепция прокариот в последнее время ставятся под сомнение как устаревшие и основанные на негативном определении: отсутствии органелл, давших свое имя «высшим» организмам (эукариотам), – ядер (Pace, 2009b, 2006). Вместо представляющегося неадекватным понятия прокариот было решительно предложено классифицировать формы жизни исключительно на базе филогенетического разделения, которое исходно возникло из деревьев рРНК и было подтверждено деревьями нескольких других (почти) универсальных информационных генов (Pace, 2009a). Что касается негативного определения прокариот, то ему было противопоставлено определение, основанное на позитивных признаках, таких как сопряжение транскрипции и трансляции (Martin and Koonin, 2006b)[55]. Каковы бы ни были относительные достоинства этих аргументов, сравнительная геномика пролила свой собственный свет на проблему прокариот. Как обсуждалось в этой главе, между археями и бактериями наблюдается очень небольшая степень сохранения репертуара генов (КОГ) и даже еще меньшая степень сохранения в организации специфических оперонов. Действительно, на эволюционных деревьях, построенных на основе сравнения репертуара генов и консервативных пар соседних генов, разделение между бактериями и археями весьма четкое (Wolf et al., 2002).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Логика случая. О природе и происхождении биологической эволюции"

Книги похожие на "Логика случая. О природе и происхождении биологической эволюции" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Евгений Кунин

Евгений Кунин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции"

Отзывы читателей о книге "Логика случая. О природе и происхождении биологической эволюции", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.