Авторские права

Юлен Очаковский - Свет в море

Здесь можно скачать бесплатно "Юлен Очаковский - Свет в море" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1970. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Свет в море
Издательство:
Наука
Год:
1970
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Свет в море"

Описание и краткое содержание "Свет в море" читать бесплатно онлайн.



Книга посвящена одному из сложных и интересных разделов науки — гидрооптике которая изучает проникновение и распространение света в море.

В настоящее время знать физические законы, определяющие эти процессы, особенно необходимо в связи с решением такой важной и актуальной проблемы, как освоение ресурсов Мирового океана.

Человек начал наступление на водную целину. Но для успешного его завершения следует разобраться в массе трудных вопросов гидрооптики.

Чем объясняется цвет моря и почему разные моря имеют разный цвет? От чего зависит прозрачность морской воды и несколько глубоко проникает свет в океанские глубины? Почему море светится? Ответы на все эти вопросы и дает настоящая книга.

Она написана легко, физическая сущность процессов объяснена весьма доступно. Издание рассчитано на широкие круги читателей.






Рис. 30. Объяснение «эффекта поверхностной потери»


Есть предположения, что прерывистость и неравномерность подводного освещения в поверхностных слоях моря влияют на процесс фотосинтеза и первичную продукцию.

Ослабление солнечного света с глубиной

Дальнейшую судьбу света, попавшего в воду, определяют два физических процесса: поглощение и рассеяние. В морской воде рассеяние, как правило, значительно интенсивнее поглощения, и вследствие этого свет в море рассеивается многократно. Каждый фотон успевает несколько раз изменить направление своего движения, прежде чем будет поглощен средой.

С увеличением глубины количество прямого солнечного света уменьшается по сравнению с рассеянным, который становится преобладающим. Кроме того, в море всегда попадает свет, рассеянный атмосферой. Распространяясь вглубь, он также подвергается поглощению и рассеянию.

Так как индикатриса рассеяния морской воды резко вытянута в направлении падающего пучка, то в процессе рассеяния подавляющая часть фотонов солнечного света незначительно изменяет направление своего движения и по-прежнему распространяется в глубь моря. Лишь небольшая доля рассеянного света направлена вверх и создает в море восходящий световой поток.

Мы уже говорили о том, что попавшие в воду световые лучи отклонены от вертикали не более чем на 48°. Если бы в море не было рассеяния, то, нырнув на глубоком месте (где можно пренебречь отражением от дна), мы увидели бы свет только по этим направлениям, а снизу и сбоку нас окружал бы сплошной мрак.

Благодаря многократному рассеянию все море буквально пронизано светом: через любую точку под водой проходит бесчисленное множество световых пучков самых различных направлений. «Как только наши глаза оказывались под водой, — рассказывает Тур Хейердал, — источник света — в отличие от нашего надводного мира — как бы переставал существовать. Преломленные лучи доходили до нас не только сверху, но и снизу; солнце больше не сияло, оно было повсюду… Здесь внизу свет отличался изумительной ясностью и действовал на нас, привыкших на палубе к тропическому солнцу, очень успокаивающе. Даже тогда, когда мы смотрели вниз, в бездонную глубину океана, где царит вечная черная ночь, эта ночь являлась нам окрашенной в приятный голубой цвет, так как от нее отражались солнечные лучи»[17].

Для того чтобы нагляднее представить, как распределяется излучение по различным направлениям, разложим мысленно в какой-нибудь точке под водой нисходящий и восходящий световые потоки на «элементарные» световые пучки. Проведем из рассматриваемой точки в направлении каждого пучка отрезок, пропорциональный его яркости. Затем, соединив концы отрезков, получим замкнутую поверхность. Объемное тело, ограниченное этой поверхностью, называется телом яркости.

Форма тела яркости дает представление о структуре светового поля в данной точке. Например, параллельный пучок света имеет тело яркости в виде прямолинейного отрезка в направлении этого пучка, а излучение, рассеянное равномерно по всем направлениям, имеет тело яркости в виде шара.

Рис. 31. Изменение формы тела яркости с глубиной

1—4 м; 2—10 м; 3—17 м; 4—29 м; 5—41 м; 6—54 м; 7—66 м


Под совместным воздействием рассеяния и поглощения форма тела яркости в море изменяется с глубиной (рис. 31).

Вблизи поверхности преобладает прямой солнечный свет. Тело яркости резко вытянуто в направлении солнечных лучей, особенно при безоблачном небе. В результате рассеяния вытянутость тела яркости уменьшается с глубиной, оно укорачивается и становится более округлым. Кроме того, меняется и направление преимущественного распространения излучения: световые пучки, значительно отличающиеся от вертикальных, проходят в воде больший путь и, следовательно, ослабляются с глубиной сильнее. Таким образом, ось тела яркости с глубиной постепенно поворачивается до тех пор, пока не совпадет с вертикалью (см. рис. 31).

На достаточно больших глубинах тело яркости приобретает постоянную форму. Такое установившееся распределение излучения на глубине называют глубинным режимом. Важно отметить, что форма тела яркости в глубинном режиме зависит от оптических свойств морской воды в данном месте, а условия внешнего освещения и состояние поверхности моря не играют никакой роли. Например, в полностью рассеивающей среде (поглощение отсутствует) глубинное тело яркости независимо от внешнего освещения имеет форму шара, а в полностью поглощающей среде (рассеяние отсутствует) оно изображается прямолинейным отрезком. В промежуточных случаях тело яркости в глубинном режиме представляет собой тело вращения относительно вертикальной оси, вытянутость которого зависит от соотношения между рассеянием и поглощением, а также от формы индикатрисы рассеяния.

Существование глубинного режима предсказал академик В. А. Амбарцумян. Экспериментальное подтверждение этого интересного явления было получено сначала на модельных средах, а затем и непосредственно в море.

В Морском гидрофизическом институте В. А. Тимофеева детально исследовала условия наступления глубинного режима и установила зависимость формы углового распределения яркости от соотношения между рассеянием и поглощением. Она использовала молочные и канифольные среды, поглощение в которых изменялось путем добавления красителя в различных концентрациях. Глубина, на которой устанавливается постоянная, форма тела яркости, зависит от соотношения между рассеянием и поглощением и от индикатрисы рассеяния. В сильно поглощающей среде глубинный режим наступает только при очень значительном ослаблении первоначального светового потока. Море с этой точки зрения представляет собой идеальный объект для изучения глубинного режима — ведь в морской воде рассеяние, как правило, значительно превышает поглощение. Измерения Института океанологии показали, что в Черном море постоянная форма тела яркости устанавливается на глубине лишь немного больше 100 м. В более прозрачном Средиземном море это явление осуществляется только на 200-метровой глубине.

Наступление глубинного режима в значительной степени зависит от того, как освещается поверхность моря. При облачном небе, когда прямых солнечных лучей нет, глубина его установления значительно меньше, чем при наличии направленного солнечного излучения.

Спектральный состав солнечного света на различных глубинах

Мы уже знаем, как происходит ослабление направленного светового пучка в светорассеивающей среде, как формулируется закон Бугера, что такое показатель ослабления света. Если рассматривать поведение не какого-то отдельного светового пучка, а, всего потока света, распространяющегося от поверхности в глубь моря, то мы увидим, что ослабление этого потока с глубиной в первом приближении также подчиняется показательному закону: Фz = Ф0∙10-αz (Ф0 — величина светового потока непосредственно под поверхностью моря; Фz — величина потока, достигающего глубины z). Показатель α в этой формуле носит название показателя вертикального ослабления и его не следует путать с показателем ослабления ε. Эти два показателя значительно отличаются друг от друга по величине. Показатель ослабления ε используется для оценки ослабления светового пучка, распространяющегося в каком-то одном направлении, и складывается из поглощения и всего рассеяния. Показатель вертикального ослабления α характеризует ослабление всего нисходящего светового потока в море (т. е. потока, составленного из множества «элементарных» световых пучков различных направлений). Он складывается из поглощения и лишь небольшой доли рассеяния (ведь мы уже говорили, что большая часть рассеянного света по-прежнему распространяется в глубь моря). Ясно, что показатель вертикального ослабления α будет всегда значительно меньше, чем показатель ослабления ε. Например, в Черном море, когда показатель ослабления ε составлял 0,17 м-1, показатель вертикального ослабления а оказался равным всего лишь 0,04 м-1.

Столь большая разница имеет огромное значение для распространения света в море. Действительно, ослабляясь со значением показателя 0,04 м-1, нисходящий световой поток на глубине 100 м уменьшается в 10 000 раз, в то время как, если бы он ослаблялся со значением показателя 0,17 м-1, он уменьшился бы на этой глубине в 100 000 000 000 000 000 раз, т. е. его практически нельзя было бы обнаружить. На величину показателя вертикального ослабления α влияет характер освещения поверхности моря (в верхних слоях он зависит от высоты Солнца) и глубина. Это происходит и благодаря неоднородности оптических свойств морской воды по вертикали и вследствие изменения с глубиной состава излучения. После наступления глубинного режима показатель α уже не меняется и его значение зависит только от оптических свойств среды.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Свет в море"

Книги похожие на "Свет в море" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Юлен Очаковский

Юлен Очаковский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Юлен Очаковский - Свет в море"

Отзывы читателей о книге "Свет в море", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.