Авторские права

Юлен Очаковский - Свет в море

Здесь можно скачать бесплатно "Юлен Очаковский - Свет в море" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1970. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Свет в море
Издательство:
Наука
Год:
1970
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Свет в море"

Описание и краткое содержание "Свет в море" читать бесплатно онлайн.



Книга посвящена одному из сложных и интересных разделов науки — гидрооптике которая изучает проникновение и распространение света в море.

В настоящее время знать физические законы, определяющие эти процессы, особенно необходимо в связи с решением такой важной и актуальной проблемы, как освоение ресурсов Мирового океана.

Человек начал наступление на водную целину. Но для успешного его завершения следует разобраться в массе трудных вопросов гидрооптики.

Чем объясняется цвет моря и почему разные моря имеют разный цвет? От чего зависит прозрачность морской воды и несколько глубоко проникает свет в океанские глубины? Почему море светится? Ответы на все эти вопросы и дает настоящая книга.

Она написана легко, физическая сущность процессов объяснена весьма доступно. Издание рассчитано на широкие круги читателей.






Эта разница в значениях показателей поглощения и в их спектральном распределении может заметно сказаться на температуре поверхностного слоя моря. При прочих равных условиях (количество упавшей энергии, интенсивность перемешивания и т. п.) воды с повышенной концентрацией «желтого вещества» будут лучше прогреты, чем такой же слой чистых океанских вод. Грубо говоря, мутные воды более теплые, чем чистые. Если одно и то же количество световой энергии будет поглощено, т. е. в значительной степени преобразовано в тепловую, в тонком слое мутной воды, то этот слой будет нагрет сильнее, чем более толстый слой чистой воды, поглотивший ту же энергию.

Наряду с другими факторами данное явление определяет более бурное протекание процесса фотосинтеза, т. е. образования фитопланктона, в водах с повышенным содержанием «желтого вещества». Это один из примеров взаимообусловленности процессов, происходящих в море.

Таким образом, поглощение света в морской воде вызывается как поглощением молекулами самой воды, так и растворенными в ней неорганическими и органическими веществами. Мы уже говорили о том, что в видимой области спектра неорганические соли оказывают слабое влияние на поглощение света; следовательно, различие в спектральных кривых поглощения морской воды может возникать только за счет различия в количестве и характере растворенного в воде органического вещества[7].

Показатель поглощения — одна из важнейших гидрооптических характеристик, знание которой необходимо для различных расчетов, связанных с распространением света в море. А вот как его измерить?

Рис. 3. Спектральные кривые показателей поглощения дистиллированной воды (1), отфильтрованной морской воды (2), естественных вод Атлантического океана (3) и Балтийского моря (4)


Рис. 4. Спектральные кривые ослабления света морской водой, измеренные различными приборами:

1 — обычным спектрофотометром (рассеяние совершенно скрадывает эффект поглощения);

2 — с помощью молочного стекла (хорошо видны пики поглощения хлорофилла у 440 и 675 нм)


Еще в конце XIX в. появились более или менее точные данные о поглощающей способности воды. Так, Г. Гюфнер и Е. Альбрехт, направляя солнечный свет в трубки с водой, определили ослабление водой различных участков видимого спектра. Затем на дистиллированной и озерной воде выполнил измерения О. Ауфзесс. Эти определения долгое время считались классическими. Данные об ослаблении света водой в инфракрасной области спектра были получены Ашкинассом. В диапазоне длин волн от 360 до 800 нм тщательные исследования провел Джемс.

Все указанные измерения, как правило, производились на пробах воды, залитых в трубки со стеклянными торцевыми крышками. Трубки затем помещались в различного типа спектрофотометры. Луч света определенной длины волны пропускался через слой воды известной толщины. По отношению интенсивности света, прошедшего через воду, к интенсивности падающего света вычислялся спектральный показатель поглощения.

Здесь необходимо сделать одну оговорку. Мы уже указывали на то, что свет в воде ослабляется под воздействием двух процессов: поглощения и рассеяния. Поэтому при измерениях поглощения описанными методами надо было быть уверенным, что свет, проходивший через трубку с водой, только поглощался, а не рассеивался.

Как известно, спектральный анализ широко применяется при исследовании содержания и состава различных веществ. Измерив спектр поглощения исследуемой системы (т. е. зависимость показателя поглощения от длины волны света), по положению максимумов и минимумов поглощения в этом спектре можно судить о составе и количестве присутствующих веществ. К морской воде, где рассеяние, как правило, значительно превышает поглощение, обычные методы спектрального анализа неприменимы. Ведь к потерям света в результате поглощения обязательно добавятся потери из-за рассеяния, которые могут значительно исказить истинную спектральную зависимость поглощения (рис. 4). Определение истинного поглощения в рассеивающей среде (в частности, в морской воде) — серьезная проблема, не решенная до конца и в настоящее время. Измеряя поглощение в лабораториях, исследователи пускаются на различные хитрости, чтобы собрать в приемнике вместе с прошедшим и весь рассеянный свет. Один из таких методов был предложен японским профессором Сибата в 1954 г. Между приемником и кюветой помещают рассеивающее опаловое стекло, а стенки кюветы покрывают зеркально отражающим слоем с целью увеличить долю рассеянного света, попадающего в приемник. Как видно из рис. 4, этот метод позволяет в значительной степени избавиться от вредного влияния рассеяния.

Существуют также методы определения показателя поглощения в рассеивающих средах, основанные на теории светового поля. Применение этих методов требует погружения измерительной аппаратуры непосредственно в море.

Почему свет рассеивается в морской воде?

Представим себе, что путем многократных перегонок и фильтраций нам удалось получить некоторое количество воды, не содержащей ни одной даже мельчайшей частички пыли. Зальем эту «оптически пустую» воду в аквариум. Вообразим, кроме того, что ее молекулы равномерно распределены по всему объему и застыли на какое-то мгновение в таком положении. Направим теперь на одну из стенок нашего аквариума параллельный пучок света и посмотрим сбоку. Оказывается, ничего не видно.

Но стоит слегка подогреть воду, заставить шевелиться молекулы, и сейчас же станет различим едва заметный пучок проходящего через воду света.

Добавим в воду немного пыли или несколько капель молока. Пучок света теперь виден совершенно отчетливо.

Что же произошло?

Пока свет проходил через абсолютно однородную воду, рассеяние отсутствовало, поэтому мы ничего не видели через боковую стенку аквариума. Однако достаточно было нарушить однородность среды, подогрев ее или засорив посторонними включениями, и пучок сразу стал заметен, так как произошло частичное рассеяние света пучка. Чем же это объяснить?

Рис. 5. Флуктуация молекул:

1 — объем со средним количеством молекул; 2 — флуктуация с уменьшением плотности; 3 — флуктуация с увеличением плотности


С повышением температуры «застывшие» молекулы пришли в движение, беспорядочно собираясь в одном месте и образуя «пустоты» в другом, т. е. равномерное распределение молекул в объеме воды нарушилось. Такие нарушения называют флуктуациями плотности вещества.

Наглядно представить себе происшедшее можно, взглянув на рис. 5. Когда мы добавляли в «оптически пустую» воду пыль или капли молока, то тем самым нарушали однородность воды посторонними включениями, которые оказались в ней во взвешенном состоянии в виде твердых частиц (пыль) или эмульсии жира (молоко). Таким образом, в первом случае мы наблюдали рассеяние света, вызванное молекулами вещества, т. е. молекулярное рассеяние света, а во втором — рассеяние, обусловленное взвешенными частицами. Надо отметить, что оптические свойства этих частиц должны отличаться от оптических свойств воды, иначе никакого нарушения однородности не произойдет и свет рассеиваться не будет.

Впервые рассеяние света мелкими частичками, размеры которых меньше длины световой волны, исследовал английский физик Рэлей. Интенсивность рассеяния такими частичками обратно пропорциональна четвертой степени длины волны. Другими словами, если мы возьмем равный по интенсивности фиолетовый и красный свет, то энергии в рассеянном пучке фиолетового света будет почти в 17 раз больше, чем в красном.

Рис. 6. Индикатриса рэлеевского рассеяния


Если интенсивность излучения, рассеянного под углом 90° относительно первоначального направления, обозначить I90, то интенсивность рэлеевского рассеяния по всем другим направлениям (IY) будет подчинена определенной закономерности:

Произведя элементарно простой расчет и отложив на графике интенсивность рассеяния под различными углами в виде векторов соответствующей длины, можно, соединив концы этих векторов плавной кривой, получить так называемую индикатрису рассеяния (рис. 6). По форме этой индикатрисы видно, что при рэлеевском рассеянии вперед рассеивается столько же света, сколько и назад, т. е. рассеяние симметрично относительно осей х и у. Естественно, чем больше в воде рассеивающих частиц, тем сильнее будет рассеиваться свет.

В 1908 г. М. Смолуховский предположил, что скопления молекул, возникающие из-за флуктуаций плотности, могут рассеивать свет так же, как и материальные частицы. А. Эйнштейн дал дальнейшую математическую разработку теории Смолуховского. Выведенные уравнения позволили рассчитать величину рассеяния, которое происходит в воде за счет флуктуаций плотности. Полученные величины оказались настолько малы, что объяснить ими рассеяние, наблюдаемое в море, было невозможно. Даже в самых чистых океанских водах молекулярное рассеяние играет отнюдь не главную роль. Чем же рассеивается свет в чистейших водах морей и океанов?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Свет в море"

Книги похожие на "Свет в море" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Юлен Очаковский

Юлен Очаковский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Юлен Очаковский - Свет в море"

Отзывы читателей о книге "Свет в море", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.