» » » » Антонио Дуран - Истина в пределе. Анализ бесконечно малых


Авторские права

Антонио Дуран - Истина в пределе. Анализ бесконечно малых

Здесь можно скачать бесплатно "Антонио Дуран - Истина в пределе. Анализ бесконечно малых" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Де Агостини, год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Антонио Дуран - Истина в пределе. Анализ бесконечно малых
Рейтинг:
Название:
Истина в пределе. Анализ бесконечно малых
Издательство:
Де Агостини
Жанр:
Год:
2014
ISBN:
978-5-9774-0708-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Истина в пределе. Анализ бесконечно малых"

Описание и краткое содержание "Истина в пределе. Анализ бесконечно малых" читать бесплатно онлайн.



Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.






Аналогично с помощью функций можно описать совершенно разные явления: изменение курса акций определенного банка или компании на фондовой бирже, плотность каждого участка тела человека (так мы сможем определить без хирургического вмешательства, где находятся кости, мышцы и внутренние органы) или силу, с которой потоки воздуха воздействуют на крылья самолета во время полета.

Чтобы использовать анализ бесконечно малых при решении задач, сначала требуется описать задачу на языке функций.

После того как природные, физические или экономические процессы, которые мы хотим изучить, представлены в виде функций, в дело вступают фундаментальные понятия анализа бесконечно малых. С их помощью можно извлечь из функций интересующую нас информацию.


Производные

Основное понятие дифференциального исчисления — это понятие производной. В действительности это один из краеугольных камней не только математики, но и науки в целом, ведь за ним скрываются такие фундаментальные понятия, как скорость или сила в физике, угол наклона касательной к кривой в геометрии и многие другие.

Производная функции f в точке а показывает, как изменится функция в этой точке по сравнению с тем, как изменяется значение переменной. Рассмотрим две функции из прошлых примеров: s(t) = √t и v(t) = t2. При t = 1 обе эти функции принимают значение 1: s(l) = 1 и v(1) = 1. Однако из таблицы значений видно, что поведение функций вблизи t = 1 существенно различается:

t — s(t)v(t) 0,8 — 0,8944… — 0,64 0,9 — 0,9486… — 0,81 1 — 1 — 1 1,1 — 1,0488… — 1,21 1,2 — 1,0954… — 1,44

Заметьте, что функция v вблизи 1 изменяется более резко, чем функция s.

Чтобы измерить эти изменения, то есть чтобы определить производную, выберем произвольное число а и близкое к нему число a + h. Рассмотрим, как изменяется значение функции в этих точках по сравнению с изменением значения переменной. Для этого разделим разность значений функции f(a + h) — f(а) на разность значений переменных, а + h — a = h. Искомая дробь будет иметь вид:

(f(a+h) — f(a))/h

Продолжим рассматривать функции s(t) = √t и v(t) = t2. Вычислим значения этой дроби для а = 1:

Наибольшее значение этой дроби для функции v приближается к 2, для функции s оно примерно равно 0,5. Это указывает на все тот же факт, который можно видеть из предыдущей таблицы: функция v вблизи точки 1 изменяется быстрее, чем функция s. Нас особенно интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, то есть когда числа а + h и а совпадают. Это значение мы назовем производной функции f в точке а. Будем обозначать его f’(а). Это обозначение ввел французский математик Жозеф Луи Лагранж (1736—1813) (см. главу 6). Как можно видеть, значение этой дроби равно 0/0, то есть оно не определено.

Однако это лишь кажущаяся неопределенность, поскольку, как показано в предыдущей таблице, для наших функций s(t) = √t и v(t) = t2 при малых значениях h, отличных от нуля, обе дроби

(s(l+h)-s(l))/h и (v(1+h) –v(1))/h

определены и равны соответственно 0,5 для функции s(t) = √t и 2 — для функции v(t) = t2. Далее мы покажем, что эти значения действительно соответствуют значениям производных обеих функций в точке 1, то есть s’(l) = 0,5 и v’(l) = 2.

Деление ноля на ноль, возникающее при определении производной, представляло трудность для ученых XVII века и их предшественников всякий раз, когда они пытались рассчитать, например, угол наклона касательной к кривой или мгновенную скорость движения тела, зная пройденный им путь.

Бесконечность, основа анализа бесконечно малых, скрывается именно в этой операции деления ноля на ноль. Как мы только что сказали, нас интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, когда и числитель, и знаменатель обращаются в ноль. Подобные величины, равные нулю, отношение которых необходимо найти, математики XVII века назвали бесконечно малыми.

Анализ бесконечно малых, созданный Ньютоном и Лейбницем и усовершенствованный Леонардом Эйлером (1707—1783) и другими математиками XVIII века, можно назвать искусством манипулирования бесконечно малыми величинами. Как рассказывается в следующих главах, парадоксально, но ни один из этих гениальных математиков не определил сколько-нибудь точно понятие бесконечно малой величины, которое легло в основу математического анализа.

Ньютону и Лейбницу удалось завершить работу множества их коллег — математиков XVII века и создать анализ бесконечно малых, одним из разделов которого является дифференциальное исчисление. Ньютон и Лейбниц определили простые правила, позволявшие устранять неопределенность, которая заключается в делении ноля на ноль и возникает всякий раз, когда мы хотим вычислить производную функции. Это были правила вычисления производных элементарных функций, в частности степенной:

(xn)′ = nxn-1;

тригонометрических функций:

(sin х)= cosх, (cos x)′ = -sin х;

логарифмов:

(log x)′ = 1/х

показательных функций:

(ex)′ = еx

а также правила вычисления производной для основных операции с функциями, в частности суммы:

(f+g)′ = f′ + g′;

произведения:

(fg)′ = f′g + fg′;

деления:

(f/g)’ = (f’g – fg’)/g2

и для сложных функций:

(f(g))’ = f’(g)∙g’.

Гордиевым узлом анализа бесконечно малых на протяжении XVII, XVIII и начала XIX века оставалось четкое определение того, как следует понимать значение дроби

(f(a+h)-f(a))/h

при h = 0. Этот гордиев узел разрубил французский математик Огюстен Луи Коши (1789—1857), применив понятие предела, которое он сам же и определил более или менее точно и которое затем улучшил немецкий математик Карл Вейерштрасс (1815—1897). Об этом рассказывается в главе 6.

Так как мгновенная скорость, с которой движется тело, является производной, то трудности при делении ноля на ноль препятствовали развитию физики, пока Ньютон не решил эту проблему, создав анализ бесконечно малых. До конца XVII века, когда был сформирован анализ бесконечно малых, ученые могли изучать только простейшие виды движения: равномерное движение, при котором пройденный путь пропорционален затраченному времени, следовательно, скорость постоянна, а ускорение отсутствует, а также равноускоренное движение, при котором пройденный путь пропорционален квадрату времени, скорость пропорциональна времени, а ускорение постоянно. Для изучения последнего вида движения, примером которого является падение тела под действием силы тяжести, потребовался гений Галилея, который понял его суть за несколько десятков лет до того, как с помощью анализа бесконечно малых было найдено тривиальное решение этой задачи.

Проиллюстрируем это на примере. Рассмотрим, как и в прошлых примерах, движущееся тело, которое в момент времени t прошло расстояние в s(t) = √t. Время будем измерять в секундах, расстояние — в метрах. Вычислить среднюю скорость движения тела несложно: например, в период времени с первой по четвертую секунду средняя скорость будет равна отношению пройденного пути и затраченного времени:

средняя скорость = (s(4) – s(1))/(4-1) = (2 – 1)/3 = 1/3 м/с.

Но что, если нас интересует не средняя скорость, а мгновенная скорость в конкретный момент времени? Чтобы упростить рассуждения, допустим, что мы хотим вычислить мгновенную скорость в тот момент, когда проходит ровно одна секунда от начала движения. Выберем приращение времени h и вычислим среднюю скорость в интервале времени от 1 секунды до (1 + h) секунд:

Чтобы вычислить мгновенную скорость в первую секунду, достаточно свести приращение времени h к нулю. Однако в этом случае снова возникает неопределенность:

Это происходит потому, что мгновенная скорость соответствует значению производной функции пройденного пути s(t) = √t. в момент времени t = 1.

В предыдущей таблице с числами указано, что значение этой производной должно равняться 0,5. Покажем, что это и в самом деле так, устранив неопределенность следующим способом:

Умножим числитель и знаменатель на √(1+h) + 1 и упростим выражение:

Если в последнем выражении свести приращение времени h к нулю, то мы уже не столкнемся с неопределенностью и делением на ноль. Как и следовало ожидать, при h = 0 значение дроби будет равно 0,5. На языке физики это означает:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Истина в пределе. Анализ бесконечно малых"

Книги похожие на "Истина в пределе. Анализ бесконечно малых" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Антонио Дуран

Антонио Дуран - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Антонио Дуран - Истина в пределе. Анализ бесконечно малых"

Отзывы читателей о книге "Истина в пределе. Анализ бесконечно малых", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.