» » » » В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности


Авторские права

В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Здесь можно скачать бесплатно "В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности" в формате fb2, epub, txt, doc, pdf. Жанр: Сделай сам, издательство НТ Пресс, год 2007. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности
Рейтинг:
Название:
Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности
Издательство:
НТ Пресс
Год:
2007
ISBN:
978-5477-00691-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности"

Описание и краткое содержание "Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности" читать бесплатно онлайн.



Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.

Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.

Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой — изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.






Ручки переменных резисторов, колпачки переключателей, другие элементы управления следует выполнять из изоляционного материала. Прежде чем включать прибор в сеть, подключите омметр к выводам сетевой вилки и убедитесь в отсутствии короткого замыкания.

При работе начинающего радиолюбителя с электронными устройствами желательно, чтобы в этом помещении находился второй человек, который в случае необходимости может отключить напряжение и оказать помощь.

Таковы основные правила техники безопасности при работе с электроустановками. Их необходимо соблюдать каждому радиолюбителю.


Действие электрического тока на человека

В зависимости от условий, при которых человек подвергается действию электрического тока, последствия могут быть различны. Но наиболее опасно влияние на нервную систему. Как известно, работа сердца регулируется нервными импульсами, исходящими от нервной системы, под действием которых происходит его сокращение в определенном ритме. Дыхание также управляется нервной системой. Действие электрического тока нарушает нормальное функционирование нервной системы, что может привести к беспорядочному сокращению мышц сердца, называемому фибрилляцией. Это равносильно его остановке и грозит летальным исходом.

Воздействие тока выражается в виде электрического удара и шока. Электрический удар в зависимости от последствий можно условно разделить на пять степеней:

• едва ощутимое сокращение мышц;

• судорожное сокращение мышц с сильными болями без потери сознания, при этом могут быть механические травмы под действием сокращения мышц;

• судорожное сокращение мышц с потерей сознания;

• потеря сознания с нарушением работы сердца и дыхания;

• клиническая смерть.

При оказании своевременной помощи человека можно спасти! Шок от удара электричеством имеет две фазы: возбуждения и торможения. Фаза возбуждения характеризуется сохранением активности и работоспособности, но потом она переходит в фазу торможения. Она характеризуется понижением давления, учащением пульса, ослаблением дыхания, возникает угнетенное состояние, потом клиническая смерть, которая без оказания помощи может перейти в биологическую.

Возможны и другие воздействия тока на человека. Тепловое воздействие характеризуется различными ожогами, химическое сопровождается электролизом крови и других веществ в организме, нарушением их химического состава и функций в организме. Механическое воздействие приводит к различным травмам частей тела под действием непроизвольного сокращения мышц. Основное значение имеет величина проходящего через тело человека тока, но важен и род тока, его частота, путь через тело, продолжительность воздействия тока и индивидуальные особенности пострадавшего.

Различные величины тока частотой 50 Гц действуют следующим образом:

• 5-10 мА — боль в мышцах, их судорожное сокращение, руки с трудом можно оторвать от электродов;

• 10–20 мА — боли, руки невозможно оторвать от электродов;

• 25–50 мА — боль в руках и груди, дыхание затруднено, возможен паралич дыхания и потеря сознания;

• 50–80 мА — при длительном действии возможна клиническая смерть;

• 100 мА и более — при длительности более трех секунд возможна клиническая смерть.

Будьте внимательны и осторожны!


Что представляет собой молния?

Каждый из нас неоднократно наблюдал грозу, видел молнии и слышал гром. И, конечно, хотел узнать, что это такое. Изучением этого явления природы занимались многие ученые, в частности Б. Франклин, М. В. Ломоносов, Г. В. Рихман. В 1753 году, исследуя атмосферное электричество, Г. В. Рихман погиб от удара молнии.

Как же образуются грозовые облака? При нагревании атмосферы теплые воздушные массы поднимаются, а холодные опускаются. В результате соприкосновения различные воздушные потоки и облака электризуются. При этом одна часть облака электризуется положительно, а другая — отрицательно (рис. 3.1).



Рис. 3.1. Принцип образования грозовых облаков


Напряжение между двумя облаками, а также между облаками и землей достигает десятков миллионов вольт. В результате между облаками или между облаком и землей возникает гигантская искра — молния. Длина ее достигает нескольких километров, а диаметр ее канала иногда составляет метр и больше. Сила тока в канале молнии огромна: от 1 до 200 кА. Однако длительность разряда мала: она составляет тысячные доли секунды.

Удары молний очень опасны. Молния может разрушить здание, опору электропередач, заводскую трубу, вызвать пожар и т. д. Ее удар смертелен для всего живого, но в людей и животных молния ударяет сравнительно редко и только в тех случаях, когда сам человек из-за незнания создает для этого благоприятные условия. Находясь в поле, нельзя скрываться от дождя под одиноко стоящим деревом или в копне сена, в лесу надо уходить от очень высоких деревьев. В горах лучше всего прятаться от дождя в пещеру или под глубокий уступ.

Молния чаще ударяет в высокие предметы, а из двух предметов одинаковой высоты — в тот, который является лучшим проводником. Для защиты одиноко стоящих сооружений (зданий, опор линий электропередач и т. д.) вблизи них устанавливают мачту с заостренным металлическим стержнем, который хорошо соединен (спаян, сварен) толстым проводом с металлическим предметом, закопанным глубоко в землю. Это устройство получило название молниеотвода (часто называют громоотводом). Упрощенно принцип работы молниеотвода можно объяснить так. Грозовая туча своим электрическим полем вызывает в молниеотводе электрический заряд, у которого знак противоположен знаку заряда тучи. Этот заряд, стекая с острия молниеотвода, нейтрализует заряд тучи. Защищаемое молниеотводом пространство на поверхности земли определяется высотой молниеотвода.

Глава 4

Закон Ома

Предполагалось, что книга не будет содержать формул, и в принципе можно было бы для начала обойтись без них, но в электронике абсолютно все связано с законами физики, которые выражаются, как правило, формулами. И совершенно не последнюю роль играет закон Ома.


Основной принцип закона Ома

Закон Ома — это физический закон, определяющий соотношение между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Гeopra Ома. Суть закона проста: порождаемый напряжением ток обратно пропорционален сопротивлению, которое ему приходится преодолевать, и прямо пропорционален порождающему напряжению. Именно такое определение вы бы прочитали в учебнике по физике. Я же попробую объяснить это на примере с водопроводной трубой.

Припоминаете, что такая же аналогия использовалась, когда мы говорили о токе?

Представьте себе, что вода — некое подобие электрического тока, образуемого направленным движением электронов в проводнике, а напряжение — аналог давления (напора) воды. Сопротивление — это та сила противодействия среды их движению, которую приходится преодолевать электронам (воде), в результате выделяется теплота. Именно такая модель представлялась Георгу Ому в 1820-е годы, когда он занялся исследованием природы происходящего в электрических цепях. Чем выше давление воды в трубе, тем относительно большая доля энергии расходуется на преодоление сопротивления, поскольку в трубах усиливается турбулентность потока.

Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. Очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается очень просто:

V = I х R,

где V - напряжение, приложенное к участку цепи, I — сила тока, a R — электрическое сопротивление участка цепи (рис. 4.1).



Рис. 4.1. Для этой цепи, согласно закону Ома, напряжение V равно силе тока I, измеренной амперметром А, умноженной на сопротивление R.


Сегодня мы понимаем, что электрическая проводимость обусловлена движением свободных электронов, а сопротивление — столкновением этих электронов с атомами кристаллической решетки. При каждом таком столкновении часть энергии свободного электрона передается атому, который, начинает колебаться более интенсивно, и в результате мы наблюдаем нагревание проводника под действием электрического тока. Повышение напряжения в цепи никак не сказывается на доле тепловых потерь такого рода, и соотношение напряжения и электрического тока остается постоянным.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности"

Книги похожие на "Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора В. Дригалкин

В. Дригалкин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности"

Отзывы читателей о книге "Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.