» » » » Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира


Авторские права

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Здесь можно купить и скачать "Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент «БИНОМ. Лаборатория знаний»a493f192-47a0-11e3-b656-0025905a06ea, год 2015. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Рейтинг:
Название:
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Автор:
Издательство:
неизвестно
Год:
2015
ISBN:
978-5-9963-1368-6
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира"

Описание и краткое содержание "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира" читать бесплатно онлайн.



Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.

Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.






Подобно многим вещам в нашей жизни, строение атома определяется тончайшим балансом сил. Электроны притягиваются к ядру электромагнитной силой, которая гораздо сильнее, чем сила тяжести. Электромагнитное притяжение между электроном и протоном примерно в 1039 раз сильнее гравитационного притяжения между ними. Но в то время как гравитация – вещь простая (всё притягивает всё), электромагнитное взаимодействие является более хитрым. Нейтроны получили свое название потому, что они нейтральны, то есть вообще не имеют электрического заряда. И следовательно, электромагнитное взаимодействие между электроном и нейтроном равно нулю.

Частицы с одноименным электрическим зарядом отталкиваются друг от друга, в то время как противоположности, в соответствии с романтическими клише, притягиваются. Электроны притягиваются к протонам, находящимся внутри ядра, поскольку электроны отрицательно заряжены, а протоны – положительно. Но тогда возникает вопрос: почему упакованные так плотно внутри ядра протоны не отталкивают друг друга? Дело в том, что их взаимное электромагнитное отталкивание действительно существует, но оно значительно слабее, чем сильное ядерное взаимодействие. Электроны не чувствуют этого сильного взаимодействия (как нейтроны не чувствуют электромагнитного), а вот протоны и нейтроны его очень даже чувствуют, и именно поэтому могут объединяться друг с другом и образовывать атомные ядра. Однако только до определенного предела. Если ядро становится слишком большим, электрическое отталкивание усиливается настолько, что протонам уже трудно удержаться вместе, и ядро приобретает радиоактивные свойства: оно поживет еще какое-то время, а потом распадется на меньшие ядра.

Антиматерия

Все, что вы видите вокруг прямо сейчас, или видели своими глазами, или слышали своими ушами, а также воспринимали с помощью любого из органов чувств когда-либо прежде, – все это составлено из электронов, протонов и нейтронов, на которые действуют три силы – гравитация, электромагнетизм и ядерная сила. Последняя удерживает вместе протоны и нейтроны в ядрах атомов. В начале 1930-х годов был открыт нейтрон, и физикам стала известна вся троица этих частиц – электроны, протоны и нейтроны. В то время, должно быть, трудно было не поддаться искушению и не поверить, что эти три фермиона – действительно самые важные, фундаментальные ингредиенты Вселенной, то есть основные блоки конструктора «Лего», из которых все строится. Но у природы было припасено для нас еще несколько сюрпризов.

Первым, кто понял в общих чертах, как ведут себя фермионы, стал английский физик Поль Дирак. В конце 1920-х годов он вывел уравнение, описывающее поведение электрона. Физикам понадобилось много времени, чтобы понять эту работу Дирака. Непосредственным следствием уравнения Дирака является наличие у каждого фермиона частицы противоположного вида, названной античастицей. Частицы антивещества имеют точно такую же массу, что и их визави из вещества, но противоположный электрический заряд. Когда частицы и античастицы встречаются вместе, они, как правило, аннигилируют с высвобождением энергии, и если мы сможем собрать вместе некоторое количество частиц антиматерии, это даст нам (теоретически) отличный способ запасти энергию. Эта идея породила множество сюжетов в научно-фантастической литературе на тему ракетных двигателей, работающих на антивеществе.

Теория Дирака блестяще подтвердилась в 1932 году, когда американский физик Карл Андерсон открыл позитрон – античастицу электрона. Существует строгая симметрия в отношениях между материей и антиматерией. Однако сегодня мы знаем, что вся та Вселенная, которую мы можем наблюдать, заполнена именно веществом и содержит очень мало антивещества. Почему Вселенная должна быть именно такой, остается для физиков загадкой, впрочем, у нас есть на этот счет целый ряд многообещающих идей.

Андерсон изучал космические лучи – частицы высокой энергии, прилетающие из космоса в атмосферу Земли. Там они сталкиваются с частицами атмосферы, и при этом рождаются другие частицы, часть которых устремляется к поверхности Земли, к нам. Таким образом, земная атмосфера играет роль гигантского естественного детектора частиц.

Чтобы получить изображения треков заряженных частиц, Андерсон использовал удивительный прибор – «облачную камеру» (или «конденсационную камеру», некий аналог «камеры Вильсона»). Это удачное название, так как основной принцип можно понять, наблюдая за тем, что происходит в реальных облаках. Вы заполняете камеру перенасыщенным водяным паром, причем «перенасыщенный» означает, что водяной пар действительно готов превратиться в капельки воды, но еще не в состоянии это сделать без какого-либо внешнего толчка. В обычном облаке таким толчком обычно служит некоторая частичка примеси вроде пылинки или кристаллика соли. В физическом приборе – «облачной камере» – такой инициатор конденсации появляется, когда в нее прилетает заряженная частица. Частица сталкивается с атомами внутри камеры, выбивает из них электроны, образуя на своем пути ионы. Эти ионы служат центрами кристаллизации, на которых конденсируются крошечные капельки воды. Таким образом, пролетающая заряженная частица будет оставлять за собой след из капель, похожий на инверсионный след самолета, позволяющий нам увидеть его путь.

Андерсон поместил свою «облачную камеру» внутрь мощного магнита высотой со здание аэронавтики в Калифорнийском технологическом институте (Калтехе) и стал наблюдать за треками (следами) космических лучей. Получение перенасыщенного до нужной степени пара внутри камеры требовало быстрого (адиабатического) снижения давления, что достигалось при падении поршня, сопровождаемого громким хлопком. Камеру включали только по ночам, поскольку она потребляла огромное количество электроэнергии, и тогда громкие удары поршня будили жителей Посадену, сообщая во всеуслышание, что ученые не покладая рук трудятся над раскрытием тайн Вселенной.


Изображение треков в облачной камере, с помощью которой Карл Андерсон открыл позитрон. Траектория позитрона – искривленная линия, которая начинается вблизи дна, пересекает пластинку свинца, расположенную посередине камеры, продолжается в верхней половине и тянется к потолку камеры, но там трек уже имеет большую кривизну.


На фотографиях, сделанных Андерсоном, обнаружилось равное количество пролетающих через камеру частиц, чьи треки закручивались по и против часовой стрелки. Легко предположить, что в космических лучах содержалось равное количество протонов и электронов. И действительно, скорее всего, именно этого можно было ожидать, поскольку отрицательно заряженные частицы не могут быть созданы без положительных, иначе нарушился бы баланс. Но у Андерсона в эксперименте был еще один экспериментальный параметр, который он также внимательно проанализировал, – толщина ионного следа в «облачной камере». Андерсон понял, что если треки, оставленные положительными частицами, образованы протонами, которые движутся сравнительно медленно (в данном контексте это означает, что их скорость ниже, чем 95 % скорости света), то они, эти треки, должны быть шире, толще, чем те, что наблюдались в эксперименте. Оказалось, таинственные частицы, пролетавшие через камеру, были положительно заряженными, как протоны, но такими же легкими, как электроны.

С точки зрения логики, имелась еще одна возможность – эти треки могли принадлежать электронам, движущимся в обратном направлении. Чтобы проверить такую возможность, Андерсон вставил в камеру пластину свинца, делящую ее пополам. Частица, перелетающая сквозь свинцовую пластину из первой половины камеры во вторую, должна была бы слегка замедлиться, и это четко указало бы направление ее движения. На знаменитом снимке, вошедшем в историю физики элементарных частиц, мы видим закрученный в направлении против часовой стрелки след частицы в облачной камере, прошедшей через свинец, и замедлившейся после этого.

Так был открыт позитрон. Известные гуру теории поля – Эрнест Резерфорд, Вольфганг Паули и Нильс Бор – сначала не поверили в позитрон, но красивый эксперимент всегда одерживает верх над теоретической интуицией, какой бы блестящей она ни была. С этих пор идея антиматерии вошла в мир физики элементарных частиц навсегда.

Нейтрино

Итак, кроме трех фермионов (протона, нейтрона и электрона) у нас появились еще три (антипротон, антинейтрон, позитрон), то есть всего шесть частиц. Пока еще не густо. И остались загадки. Например, когда распадаются нейтроны, они превращаются в протоны и испускают электроны. Тщательное изучение процесса показало, что при таком распаде вроде бы нарушается закон сохранения энергии – полная энергия протона и электрона всегда оказывалась немного меньше, чем у их родителя нейтрона.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира"

Книги похожие на "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шон Кэрролл

Шон Кэрролл - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира"

Отзывы читателей о книге "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.