Вячеслав Воробьев - 12 тверских математиков

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "12 тверских математиков"
Описание и краткое содержание "12 тверских математиков" читать бесплатно онлайн.
С Тверской землёй связаны судьбы и деятельность видных российских учёных в разных отраслях науки. Вниманию читателей предлагается сборник биографических очерков о математиках, чьи труды стали достоянием фундаментальной науки, педагогики, нашли применение в технике и военном деле: Л.Ф. Магницком, С.Я. Румовском, Д.С. Чижове, Н.В. Маиевском, И.А. Вышнеградском, В.И. Смирнове, В.М. Брадисе, Г.М. Голузине, А.И. Маркушевиче, П.П. Коровкине, Н.М. Афанасьеве, Е.В. Золотове.
Правила подсчёта цифр Брадиса в 30-е гг. получили одобрение со стороны астронома М.Ф. Субботина, академика В.И. Романовского — специалиста по теории вероятностей и математической статистике, профессора Ленинградского электротехнического института А.Ф. Гаврилова, академика А.Н. Крылова и др. Постепенно растёт признание правил подсчёта цифр: они применяются не только в области теоретических расчётов, но проникают в различные отрасли. Это обстоятельство подчёркивает большое практическое значение научно-исследовательских работ, проводимых В.М. Брадисом в области совершенствования численных расчетов.
Следует отметить, что далеко ещё не все, имеющие отношение к преподаванию математики, ясно понимают вероятностный смысл правил Брадиса. Следствием этого являются многие недоразумения, возникающие в процессе изучения теории приближенных вычислений в школе. Дискуссия по этому вопросу, проведённая журналом «Математика в школе» в 1964 г., показала, что есть преподаватели-математики, предъявляющие к правилам подсчёта цифр такие требования, на которые эти правила не рассчитаны, и от которых В.М. Брадис предостерегает.
В работах указанного направления В.М. Брадис уделяет большое внимание вычислительной схеме. Так называется разметка приготовленного для записи листа бумаги, при которой каждое входящее в вычисление число записывается в особом, заранее для него отведённом месте. Выгода схемы заключается в механизации вычислительного процесса. Хорошо составив схему, вычислитель в дальнейшем освобождается от всякой работы по обдумыванию хода вычислений. Вторая выгода схемы — лёгкость контроля произведённого вычисления, как самим вычислителем, так и другими лицами.
Помимо механизации работы вычислителя путём составления схем В.М, Брадис рекомендует применять вспомогательные средства вычислений, что даёт экономию времени, снижает утомляемость человека, гарантирует уменьшение числа ошибок. Среди них особые приёмы устного и письменного выполнения действий, простейшие приборы и машины — счёты, арифмометр.
Особое место среди вспомогательных средств вычисления занимают математические таблицы, роль которых усиливается с переходом к политехническому обучению. Если в средней школе до недавнего времени широко использовались только таблицы логарифмические и логарифмо-тригонометрические, то теперь применяются таблицы квадратов, длины окружности, площади круга, которые используются в 6—8-х классах при решении задач на вычисление длины окружности и площади круга по его радиусу, на вычисление поверхности и объёма цилиндра и конуса. Основные сведения о математических таблицах рассмотрены В.М. Брадисом в книге «Средства и способы элементарных вычислений».
В широко известных четырёхзначных математических таблицах В.М. Брадиса содержится 22 таблицы и указания к пользованию ими. В.М. Брадис рекомендует пользоваться в школе именно четырёхзначными таблицами, вполне обеспечивающими нужную точность при решении жизненных задач. Трёхзначные таблицы мало удобны, так как они дают такую же точность, какую и логарифмическая линейка, на которой действия выполняются в несколько раз быстрее. Поэтому, если требуется точность до 3—4 значащих цифр, то предпочтительнее производить вычисления на линейке. Устройство и работа на логарифмической линейке рассмотрены в ряде работ В.М. Брадиса и в специальном пособии для учащихся 9-го класса. В.М. Брадис рекомендует начать применение счётной линейки до того, как будет дано теоретическое обоснование её устройства, а именно в 8-м классе. В.М. Брадис высоко оценивал умение производить численные расчёты при решении жизненных задач с помощью логарифмической линейки, так как она обеспечивает практически достаточную точность результатов и даёт огромную экономию времени.
В последние годы всё более широкое применение в технике находит номография. В.М. Брадис определяет минимум знаний, который должен иметь учитель математики о номографии, и включает их в учебник «Теория и практика вычислений» для студентов пединститутов. Он уверен, что в ближайшее время простейшие номограммы войдут в общеобразовательный курс математики. В четырёхзначных математических таблицах он помещает несколько номограмм, доступных учащимся.
Вот ряд работ В.М. Брадиса, отражающих его борьбу за повышение вычислительной культуры студентов физико-математических факультетов педагогических институтов и учащихся средних школ. Здесь помимо работ, посвящённых непосредственно теории приближенных вычислений, указываются работы, связанные с использованием вспомогательных средств вычисления: математических таблиц, счётной линейки и др.
1. Таблицы четырёхзначных логарифмов и натуральных тригонометрических величин (1921 г.).
2. Четырёхзначные математические таблицы (1925 г.).
3. Как вычисляют посредством таблиц логарифмов с 4 десятичными знаками? (1926 г.).
4. Четырёхзначные математические таблицы для средней школы. Ввиду исключительного значения таблиц остановимся на них подробнее. Впервые таблицы для средней школы были изданы в 1928 г. и далее переиздавались ежегодно. В 1961 г. вышло 32-е издание, отличающееся от предыдущих тем, что оно значительно дополнено. В книге помещены номограммы, важнейшие формулы, биномиальные коэффициенты, таблицы для решения задач с процентными вычислениями, включены правила подсчёта цифр, применяемые при решении задач с приближенными данными. В 1975 г. вышло 46-е издание таблиц при ежегодном миллионном тираже. Только на русском языке их издают ежегодно 700 тысяч экземпляров. Для учащихся Латвийской, Литовской, Казахской, Киргизской, Узбекской, Украинской, Белорусской и других советских республик их издают на родном языке. Четырёхзначные математические таблицы обладают рядом достоинств: они компактны, просты для пользования, обеспечивают разумную точность результата, полезны широкому кругу лиц. Ими пользуются в своей практической работе учащиеся средних общеобразовательных школ и специальных училищ, студенты вузов, техники и инженеры различных профилей, агрономы. Таблицы переведены на иностранные языки: болгарский, чешский, немецкий, японский, китайский и др. Они вытеснили применявшиеся ранее громоздкие таблицы Пржевальского, Глазенапа и другие, которыми пользовались до 1928 г.
5. Математические таблицы в школе (1929 г.).
6. Трёхзначные математические таблицы (1932 г.).
7. Приближенные вычисления в школьном курсе математики (1923, 1925, 1926, 1928 г.).
8. Вычислительная работа в курсе математики в школах II ступени (1928 г.).
9. Элементарные сведения по технике вычислений (1936 г.). Статья помещена в БСЭ, 1-е издание.
10. Приближенные вычисления в педагогическом вузе (1928, 1940 г.). В 1955 г. статья помещена в БСЭ, 2-е издание.
11. Арифметика приближенных вычислений: Учебник для институтов (1931, 1933, 1936 г.).
12. Средства и способы элементарных вычислений: Учебник для студентов пединститута (1948 г.). 3-е изд. — в 1954 г.
13. Теория и практика приближенных вычислений: Учебник для студентов педагогического института (1933, 1934, 1935, 1936, 1937 г.).
14. Умножение приближенных чисел (1926 г.).
15. Опыт обоснования некоторых правил действий над приближенными числами (1926 г.). Статья помещена в «Известиях Тверского педагогического института» в 3-м выпуске.
Последние две статьи являются важнейшими теоретическими работами, в которых изложено обоснование правил подсчёта цифр и рассмотрен способ границ, ранее не описанный в научной литературе.
16. О предельной погрешности произведения нескольких приближенных сомножителей (1928 г.).
17. Правила подсчёта цифр (1928 г.).
18. Округление. Ошибка округления (1954 г., БСЭ, 2-е изд.).
19. Погрешность. Приближенные формулы (1955 г., БСЭ, 2-е изд.).
20. Как надо вычислять? (1929, 1930, 1931, 1932, 1934 г.). В трёх выпусках.
21. Как надо вычислять?: Пособие для средней школы (1960, 1965 г.). В одном выпуске.
22. Устный и письменный счёт. Вспомогательные средства вычисления (1951 г., Энциклопедия элементарной математики).
23. То же на немецком и японском языках.
24. Извлечение квадратных и кубических корней из чисел (1961 г.).
25. Об изучении логарифмической линейки (1957 г.).
26. Счётная логарифмическая линейка: Пособие для учащихся 9 класса (1957 г.).
27. Вычислительная работа в курсе математики средней школы (1962 г.). Последняя крупная работа Владимира Модестовича.
Из этого перечня видно, что вопросом повышения вычислительной культуры учащихся В.М. Брадис занимался более 30 лет. Он нашёл способ вычисления с приближенными данными, приемлемый для школьников, обосновал его научность, сформулировал доступные учащимся правила действий, разработал методику введения правил действия.
Владимир Модестович добился осуществления многих своих идей: включения в программу математики средней школы с 1960 г. темы «Приближенные вычисления», изучения логарифмической линейки в 9-м классе и применения её при решении задач в 8-м классе, более широкого использования четырёхзначных математических таблиц.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "12 тверских математиков"
Книги похожие на "12 тверских математиков" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Вячеслав Воробьев - 12 тверских математиков"
Отзывы читателей о книге "12 тверских математиков", комментарии и мнения людей о произведении.