» » » » Лоуренс Краусс - Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную


Авторские права

Лоуренс Краусс - Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную

Здесь можно купить и скачать "Лоуренс Краусс - Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство АСТ, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лоуренс Краусс - Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную
Рейтинг:
Название:
Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-17-096627-1
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную"

Описание и краткое содержание "Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную" читать бесплатно онлайн.



Откуда взялась Вселенная? Что было до этого? Что день грядущий нам готовит? И главное – могла ли Вселенная появиться вот так, из ничего, или все-таки нужно искать следы некоего, возможно Божественного вмешательства? Знаменитый ученый, астрофизик, соратник Ричарда Докинза и великолепный популяризатор науки Лоуренс Краусc, опираясь на ошеломляющие эксперименты и новейшие теории физики, включая неуловимый бозон Хиггса, доказывает, что нечто не только может возникнуть из пустоты, но именно на этом принципе «нечто из ничего» и строится Вселенная. А чтобы понять всю революционность теории Краусса, вы переместитесь в начало времен, станете свидетелями зарождения Вселенной, проследите за движениями частиц и образованием черных дыр, двинетесь к границам галактик и узнаете, чем же может закончиться история, начавшаяся 13,7 миллиарда лет назад.

Предисловие к книге написал Ричард Докинз.






Литий, конечно, тоже интересный элемент, и многие его любят, однако для нас с вами гораздо важнее более тяжелые ядра – углерод, азот, кислород, железо и т. д. Они в результате Большого взрыва не возникли. Создание их возможно только в раскаленных недрах звезд. А попасть к вам в организм они сумеют, только если звезда окажет им любезность и взорвется, развеяв свою продукцию по космосу, и тогда в один прекрасный день атомы встретятся, соединятся и войдут в состав маленькой голубой планетки, расположенной возле звезды по имени Солнце, и ее атмосферы. За всю историю нашей Галактики в ней взорвалось около 200 миллионов звезд. Эти сонмища звезд пожертвовали собой, если хотите, ради того, чтобы вы когда-нибудь родились. По-моему, они подходят на роль Спасителей ничуть не хуже любой другой кандидатуры.

Как показали тщательные исследования, проведенные в девяностые годы, взрывающиеся звезды определенной разновидности, так называемые сверхновые типа Ia, обладают замечательным свойством: те сверхновые типа Ia, которые родились более яркими, светят дольше. Эмпирически эта зависимость прослеживается очень надежно, хотя теоретически мы еще не вполне понимаем, почему это так. А значит, такие сверхновые служат прекрасными «стандартными свечами». То есть с их помощью можно калибровать расстояния, поскольку яркость при рождении можно непосредственно определить при помощи измерения, не зависящего от расстояния до них. Если мы наблюдаем сверхновую в далекой галактике, а это нам по силам, потому что сверхновые очень яркие, – то можно пронаблюдать, сколько времени она светится, и установить ее первоначальную яркость. А тогда, измеряя абсолютную величину потока света от такой сверхновой, попадающего в наш телескоп, можно точно подсчитать, на каком расстоянии находится от нас и сама сверхновая, и ее галактика. А затем, измерив «красное смещение» света от других звезд в этой галактике, можно определить ее скорость и таким образом сравнить скорость галактики с расстоянием до нее и вычислить темп расширения Вселенной.

Пока что все хорошо, но если сверхновые взрываются только раз в сто лет в отдельно взятой галактике, каков шанс вообще их заметить? Ведь последний раз взрыв сверхновой в нашей Галактике наблюдал еще Иоганн Кеплер в 1604 году! Правду говорят, что сверхновые в нашей Галактике наблюдаются только при жизни великих астрономов, а Кеплер, безусловно, заслуживает такого звания.

Сначала Кеплер был простым австрийским учителем математики, а затем стал помощником астронома Тихо Браге, который тоже – еще до Кеплера – наблюдал сверхновую в нашей Галактике и за это получил в дар от датского короля целый остров. На основании данных о положении планет, собранных Браге более чем за десять лет, Кеплер в начале XVII века вывел три своих знаменитых закона движения планет.

1. Планеты движутся вокруг Солнца по эллипсам.

2. Прямая, соединяющая планету с Солнцем, заметает равные площади за равные промежутки времени.

3. Квадрат периода обращения планеты по орбите прямо пропорционален кубу большой полуоси его орбиты (то есть большой полуоси эллипса – половины отрезка, пересекающего эллипс в самом широком месте).

А эти законы, в свою очередь, почти сто лет спустя легли в основу закона всемирного тяготения Ньютона. Но это не единственное замечательное достижение Кеплера: он еще и успешно защитил собственную мать от обвинений в ведьмовстве и написал, возможно, первое в истории научно-фантастическое произведение – о путешествии на Луну.

В наши дни, чтобы увидеть сверхновую, надо просто посадить по аспиранту наблюдать за каждой галактикой в небе. Ведь в космических масштабах сто лет – это период, не слишком сильно отличающийся от среднего времени написания диссертации, а аспирантов на свете много и обходятся они недорого. Однако, к счастью, можно обойтись и без таких крайних мер – по очень простой причине: Вселенная стара и очень велика, а поэтому редкие события в ней происходят сплошь и рядом.

Так что отправляйтесь как-нибудь ночью на лесную поляну или в пустыню, где хорошо видно звезды, и поднимите руку к небу, соединив большой и указательный пальцы в кружок размером примерно с десятицентовик. Нацельтесь на темный участок неба, где звезд вообще не видно. В достаточно большой телескоп, которыми сегодня пользуемся мы, астрономы, на этом клочке неба можно различить около 100 000 галактик, и в каждой – миллиарды звезд. А поскольку в каждой из этих галактик раз в сто лет взрывается сверхновая, вполне можно ожидать, что за ночь на этом участке неба взорвется, скажем, три звезды.

Именно этим астрономы и занимаются. Они запрашивают время для работы на телескопе – и наблюдают то одну, то две сверхновые звезды за ночь, а иногда погода стоит пасмурная и вообще ничего не видно. Таким образом нескольким исследовательским группам удалось определить постоянную Хаббла с погрешностью менее 10 процентов. Новая величина – около 70 километров в секунду для галактик, находящихся от нас на среднем расстоянии в 3 миллиона световых лет, – почти на порядок меньше, чем получилось у Хаббла и Хьюмасона. В результате мы делаем вывод, что возраст Вселенной ближе к 13 миллиардам лет, а вовсе не к полутора миллиардам.

Как я еще покажу, эта цифра тоже полностью совпадает с независимыми оценками возраста самых старых звезд в нашей Галактике. Четыреста лет современной науки – от Браге и Кеплера до Леметра, Эйнштейна и Хаббла, от спектров звезд до распространенности легких элементов – составили яркую, непротиворечивую картину расширяющейся Вселенной. Все сходится. Картина Большого взрыва получилась очень стройной.

Глава 2. Сага о тайнах Вселенной. Космос на вес

Бывает известное известное. Это когда мы знаем, что что-то знаем. Бывает известное неизвестное. Это когда мы знаем, что чего-то не знаем. Но бывает еще и неизвестное неизвестное. Это когда мы чего-то не знаем – и не знаем, что не знаем.

Дональд Рамсфельд

Теперь, когда мы установили, что у Вселенной было начало и зародилась она в определенный момент в прошлом, который можно рассчитать, приходит на ум следующий резонный вопрос: «А чем все это кончится?»

Вообще говоря, именно этот вопрос заставил меня в свое время покинуть родное поприще – физику частиц – и углубиться в дебри космологии. В семидесятые и восьмидесятые годы XX века из детальных измерений движения звезд и газа в нашей Галактике, а также из измерений движения галактик в крупных скоплениях галактик, так называемых кластерах, напрашивался все более и более очевидный вывод, что во Вселенной есть что-то такое, чего не видно на первый взгляд – ни невооруженным глазом, ни даже в телескоп.

Главная сила, которая действует на огромном масштабе галактик, – это гравитация, поэтому измерение движения объектов на подобных масштабах позволяет исследовать гравитационное притяжение, которое управляет этим движением. Подобные измерения начались с новаторской работы американского астронома Веры Рубин и ее коллег в начале семидесятых годов XX века.

Рубин защитила диссертацию в Джорджтаунском университете, а до этого училась на вечернем отделении, пока муж ждал ее в машине, потому что водительских прав у нее не было. Она подавала документы в Принстон, в аспирантуру по астрономии, но туда до 1975 года не принимали женщин. Рубин стала второй женщиной, получившей Золотую медаль Королевского астрономического общества. Эта награда и многочисленные другие заслуженные почести достались ей благодаря революционным наблюдениям и расчетам темпа вращения нашей Галактики. Вера Рубин наблюдала звезды и горячий газ, находившиеся все дальше и дальше от центра нашей Галактики, и определила, что эти области движутся гораздо быстрее, чем в случае, если бы сила гравитации, управляющая их движением, соответствовала массе всех наблюдаемых объектов внутри Галактики. Впоследствии благодаря трудам Рубин космологам стало ясно, что объяснить это движение можно лишь одним способом – предположить, что в нашей Галактике массы гораздо больше, чем получается, если сложить массы всех этих звезд и горячего газа.

Однако в этой гипотезе была одна сложность. Те самые расчеты, которые прекрасно описывали наблюдаемую распространенность легких элементов (водорода, гелия и лития) во Вселенной, позволяют примерно судить об общем количестве протонов и нейтронов – составных частей обычного вещества. Тут все как в кулинарном рецепте, просто кухня у нас ядерная: объем получившегося блюда зависит от того, сколько в него положить каждого из ингредиентов. Если удваиваешь рецептуру – кладешь, например, четыре яйца вместо двух – и конечного продукта, в данном случае глазуньи, получится в два раза больше. Однако первоначальное количество протонов и нейтронов во Вселенной, возникшее при Большом взрыве и определенное в соответствии с наблюдаемым количеством водорода, гелия и лития, говорит о том, что вещества примерно в два раза больше, чем мы видим в звездах и раскаленном газе. Где же все эти частицы?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную"

Книги похожие на "Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лоуренс Краусс

Лоуренс Краусс - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лоуренс Краусс - Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную"

Отзывы читателей о книге "Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.