» » » » Жиль Делез - Капитализм и шизофрения. Книга 2. Тысяча плато


Авторские права

Жиль Делез - Капитализм и шизофрения. Книга 2. Тысяча плато

Здесь можно скачать бесплатно "Жиль Делез - Капитализм и шизофрения. Книга 2. Тысяча плато" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство У-Фактория, Астрель, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жиль Делез - Капитализм и шизофрения. Книга 2. Тысяча плато
Рейтинг:
Название:
Капитализм и шизофрения. Книга 2. Тысяча плато
Автор:
Издательство:
У-Фактория, Астрель
Жанр:
Год:
2010
ISBN:
978-5-9757-0526-6, 978-5-271-27869-3, 978-5-9757-0527-3, 978-5-271-29213-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Капитализм и шизофрения. Книга 2. Тысяча плато"

Описание и краткое содержание "Капитализм и шизофрения. Книга 2. Тысяча плато" читать бесплатно онлайн.



Второй том «Капитализма и шизофрении» — не простое продолжение «Анти-Эдипа». Это целая сеть разнообразных, перекликающихся друг с другом плато, каждая точка которых потенциально связывается с любой другой, — ризома. Это различные пространства, рифленые и гладкие, по которым разбегаются в разные стороны линии ускользания, задающие новый стиль философствования. Это книга не просто провозглашает множественное, но стремится его воплотить, начиная всегда с середины, постоянно разгоняясь и размывая внешнее. Это текст, призванный запустить процесс мысли, отвергающий жесткие модели и протекающий сквозь неточные выражения ради строгого смысла…






Но пока мы рассмотрели только первый аспект гладких или неметрических многообразий в противоположность метрическим — как одна детерминация может оказаться в положении, когда она составляет часть другой детерминации, причем так, что мы не способны приписать такому положению ни точную величину, ни общую единицу, ни индифферентность. В этом состоит обволакивающий или обволакиваемый характер гладкого пространства. Но как раз второй аспект еще важнее — когда ситуация двух определений исключает их сравнение. Как мы знаем, это случай римановых пространств, или скорее, римановых кусков пространства — одних по отношению к другим: «Пространства Римана лишены любого типа однородности. Каждое из них характеризуется формой выражения, которая определяет квадрат расстояния между двумя бесконечно близкими точками. <…> Отсюда следует, что два соседних наблюдателя могут определить в римановом пространстве местоположение точек, пребывающих в непосредственной близости от них, но не могут без новой конвенции определить свое местоположение по отношению друг к другу. Следовательно, каждое соседство подобно небольшому кусочку евклидова пространства, но соединение одного соседства со следующим соседством не определено и может осуществляться бесконечным числом способов. Тогда пространство Римана — в самом обобщенном виде — представляется как аморфное собрание рядоположенных, но не соединенных друг с другом, кусочков»', такое многообразие можно определить, независимо от всяких ссылок на метрику, с помощью условий частоты или, скорее, аккумуляции, с помощью совокупности соседств, причем такие условия полностью отличаются от тех, что определяют метрические пространства и их купюры (даже если отсюда должно вытекать отношение между обоими видами пространств).[665] Короче, если мы последуем за этим замечательным описанием Лотмана, то риманово пространство — это чистая ткань из лоскутов. Оно обладает коннекциями, или тактильными отношениями. У него есть ритмические значимости, не встречающиеся больше нигде, даже если они и могут транслироваться в метрическое пространство. Неоднородное, в непрерывной вариации — таково гладкое пространство как аморфное и неоднородное. Итак, мы можем определить две позитивные характеристики гладкого пространства вообще — с одной стороны, когда детерминации, являющиеся частями друг друга, отсылают к свернутым дистанциям или упорядоченным различиям независимо от величины; с другой, когда независимо от метрики возникают детерминации, которые не могут быть частями друг друга и соединяются благодаря процессам частоты или аккумуляции. В этом состоят оба аспекта nomos'a. гладкого пространства.

Однако мы всегда вновь обнаруживаем асимметричную необходимость перехода от гладкого к рифленому и от рифленого к гладкому. Если верно, что странствующая геометрия и номадическое число гладких пространств постоянно инспирируют королевскую науку рифленого пространства, то, напротив, метрика рифленых пространств (meiron) необходима для того, чтобы транслировать странные данные гладкого многообразия. Итак, трансляция — непростой акт: мало заменить движение пробегаемым пространством, нужна серия богатых и сложных операций (и Бергсон — первый, кто заговорил об этом). Трансляция более не является и вторичным актом. Это операция, состоящая, несомненно, в том, чтобы обуздать, сверхкодировать, метризировать гладкое пространство, нейтрализуя его, а также сообщая ему среду распространения, расширения, преломления, возобновления, стремительного роста, без коих оно, возможно, умерло бы само по себе — подобно маске, без которой оно не могло бы найти ни дыхания, ни общей формы выражения. Большая наука вечно нуждается во вдохновении, исходящем от малой науки; но малая была бы ничем, если бы не сталкивалась лицом к лицу с высшими научными требованиями и не проходила через них. Рассмотрим только два примера богатства и необходимости трансляции, заключающих в себе столько же шансов для раскрытия, сколько и опасностей, связанных с закрытием или остановкой. Прежде всего, сложность средств, с помощью которых мы транслируем интенсивности в экстенсивные количества или, более обобщенно, многообразия дистанции в системы величин, кои измеряют их и рифлят (роль логарифмов в связи с этим). С другой стороны — и главным образом, — тонкость и сложность средств, с чьей помощью кусочки гладкого риманова пространства обретают евклидову конъюнкцию (роль параллелизма векторов в рифлении бесконечно малого).[666] Мы не смешиваем коннекцию, присущую кускам риманова пространства («аккумуляция»), с евклидовой конъюнкцией пространства Римана («параллелизм»). Однако обе они связаны и преобразуются друг в друга. Ничего никогда не заканчивается: то гладкое пространство позволяет себе становится рифленым, то рифленое пространство возвращает себе гладкое — в случае необходимости с крайне разными ценностями, масштабами и знаками. Возможно, мы должны сказать, что любой прогресс достигается в рифленом пространстве и благодаря ему, но любое становление имеет место в гладком пространстве.

Можно ли дать самое общее математическое определение гладким пространствам? По-видимому, «фрактальные объекты» Бенуа Мандельброта находятся как раз на этом пути. Фракталы суть совокупности, чья размерность является дробной, а не целой, или же целой, но с непрерывным варьированием направления. Например, сегмент, где центральную треть мы заменяем углом равностороннего треугольника, а затем ту же операцию повторяем на каждом из четырех образовавшихся сегментов, и так далее до бесконечности, следуя отношению однородности, — такой сегмент будет конституировать бесконечную линию или кривую с размерностью выше 1, но ниже размерности поверхности (= 2). Сходные результаты могут быть получены просверливанием или вырезанием «бухточек» в круге, а не посредством добавления «мысы» треугольнику; также можно рассмотреть и куб, где дырки просверливаются согласно принципу однородности, в результате чего он становится меньше, чем объем, и больше, чем поверхность (в этом состоит математическое представление о сходстве свободного пространства и дырчатого пространства). А еще — в других формах — броуновское движение, турбулентность и облака являются такими «фрактальными объектами».[667] Возможно, мы располагаем новым способом определения нечетких множеств. Но, главным образом, гладкое пространство получает общее определение, принимающее в расчет его отличия от рифленого пространства, а также отношения с последним: 1) будем называть рифленой или метрической любую совокупность, которая имеет целую размерность и которой можно приписать постоянные направления; 2) неметрическое гладкое пространство конституируется посредством конструирования линии с фрактальной размерностью большей, чем 1, или конструирования поверхности фрактального размерности большей, чем 2; 3) фрактальное число размерности — показатель собственно направленного пространства (с непрерывной вариацией направления без касательной); 4) тогда гладкое пространство определяется тем, что у него нет измерения, дополнительного к тому, что движется по нему или вписывается в него — в этом смысле именно плоское многообразие, например линия, заполняет план, не переставая быть линией; 5) само пространство и то, что оккупирует пространство, стремятся к тому, чтобы идентифицироваться, обладать одной и той же мощью в неточной, но тем не менее строгой форме исчисляющего или не целого числа (оккупировать, не считая); 6) такое гладкое, аморфное пространство образуется благодаря аккумуляции близостей, и каждая аккумуляция определяет зону неразличимости, присущую «становлению» (больше, чем линия, и меньше, чем поверхность; меньше, чем объем, и больше, чем поверхность).


Кривая фон Коха: больше, чем линия, но меньше, чем поверхность. В сегменте АЕ (1) выделяется вторая треть и заменяется треугольником BCD (2). И (3) данная операция повторяется по отдельности во всех сегментах — АВ, ВС, CD и DE. в результате получается угловатая линия, все сегменты которой равны. На каждом из таких сегментов мы повторяем третий раз (4) то, что было проделано в (2) и (3), и так далее до бесконечности. в пределе мы получаем некую «кривую», состоящую из бесконечного числа угловых точек и не имеющую касательной ни к одной из них. Длина такой кривой бесконечна и ее размерность выше единицы: она представляет пространство размерностью 1,261859 (а точнее: log 4 / log 3).


Губка Серпинского[668] больше, чем поверхность, но меньше, чем объем! Закон, согласно которому этот куб пуст, на первый взгляд можно постичь интуитивно — каждый квадрат окружен восьмью квадратными дырками в треть от его стороны; такие восемь дырок сами окружены восемью дырками еще в треть от их стороны. И так до бесконечности. чертеж не может отобразить бесконечность дыр исчезающего размера ниже четвертого порядка, но ясно, что этот куб в пределе бесконечно пуст. Его общий объем приближается к нулю, вся боковая поверхность из пустот бесконечно возрастает. Размерность данного пространства 2,7268. Она, следовательно, «заключена» между поверхностью (с размерностью 2) и объемом (с размерностью 3). «Ковер Серпинского» — одна из граней такого куба; значит, пустоты — это квадраты, а размерность «поверхности» — 1,2618. (Воспроизводится по: Studies Geometry, Léonard Blumenthal and Karl Mé Freeman and company, 1970).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Капитализм и шизофрения. Книга 2. Тысяча плато"

Книги похожие на "Капитализм и шизофрения. Книга 2. Тысяча плато" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жиль Делез

Жиль Делез - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жиль Делез - Капитализм и шизофрения. Книга 2. Тысяча плато"

Отзывы читателей о книге "Капитализм и шизофрения. Книга 2. Тысяча плато", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.