» » » Ричард Фейнман - 7. Физика сплошных сред


Авторские права

Ричард Фейнман - 7. Физика сплошных сред

Здесь можно скачать бесплатно "Ричард Фейнман - 7. Физика сплошных сред" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
7. Физика сплошных сред
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "7. Физика сплошных сред"

Описание и краткое содержание "7. Физика сплошных сред" читать бесплатно онлайн.








Если мы отбросим fвязк, то в уравнении (40.4) все нам из­вестно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — ско­рость частицы в некотором месте жидкости, то ускорение ее будет просто равно дv//дt. Но это совсем неверно, и по довольно хитрой причине. Производная дv/дt выражает изменение ско­рости v (х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидко­сти. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени At эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Dt она из точки Р1переме­стится в точку Р2.

Фиг. 40.4. Ускорение частицы жидкости.

Фактически в направлении оси х она пере­двинется на расстояние vxDt, в направлении оси у — на рас­стояние vуDt, а в направлении оси z — на расстояние vzDt. Мы видим, что если v (х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент t+Dt представ­ляет величину v +Dx, у+Dy, z+Dz, t+Dt), причем

Dx=vxDt, Dy=vyDt и Dz=vzDt.

Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем

Ускорение же Dv/Dt будет равно

Считая С вектором, это можно записать символически:

Обратите внимание, что, даже когда дv/дt=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоян­ной скоростью по кругу: она ускоряется даже тогда, когда ско­рость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.

Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного под­становкой ускорения (40.5) в (40.4), т. е.

где слагаемое с вязкостью уже выброшено. Воспользовав­шись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:

Если определить новое векторное поле Wкак ротор скорости v, т. е.

то векторное тождество можно записать так:

а наше уравнение движения (40.6) примет вид

Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, восполь­зовавшись при этом выражением (40.7).

Если Wвсюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в дан­ный момент времени вокруг этой петли:

Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна СXv. Таким образом, W представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению W). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью W/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике W равна удвоенной локальной угловой скорости воды.

Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что r — величина постоян­ная, а ротор любого градиента равен нулю, а также использо­вав уравнение (40.3), находим

Это уравнение вместе с уравнениями

W=СXv (40.10)

и

С·v=0 (40.11)

полностью описывают поле скоростей v. На языке матема­тики — если в некоторый момент мы знаем W, то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивер­генция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v по­всюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где С·B=0 и СXB=j/e0c2.) Таким образом, данная величина W определяет v точно так же, как j опреде­ляет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения W, откуда мы можем получить новую W в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только ско­рости, а всю информацию о давлении мы потеряли.

Отметим особое следствие нашего уравнения. Если в ка­кой-то момент времени t повсеместно W=0, то дW/дt тоже исче­зает, так что W всюду останется равной нулю и в момент t +Dt. Отсюда следует, что поток все время остается безвихре­вым. Если вначале поток не вращался, то он так никогда и не начнет вращаться. При этом уравнения, которые мы должны решать, таковы:

С·v=0, СXv=0.

Они в точности напоминают уравнения электростатики или магнитостатики в пустом пространстве. Позднее мы вернемся к ним и рассмотрим некоторые частные задачи.

§ 3. Стационарный поток; теорема Бернулли

Вернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Кар­тина скоростей всегда выглядит одинаково, т. е. v представ­ляет статическое векторное поле. Как в магнитостатике мы рисовали силовые линии, так и здесь можно начертить линии, которые всегда касательны к скорости жидкости (фиг. 40.5).

Фиг. 40.5. Линии тока ста­ционарного потока.

Эти линии называются «линиями тока». Для стационарного потока они действительно представляют реальные пути частиц жидкости. (В нестационарном потоке картина линий тока меняется со временем, однако в любой момент времени она не представляет пути частиц жидкости.)

Стационарность потока вовсе не означает, что ничего не происходит — частички жидкости движутся и изменяют свои скорости. Это означает только то, что дv/дt=0. Если теперь мы скалярно умножим уравнение движения на v, то слагаемое v·(WXv) выпадет и у нас останется только

Согласно этому уравнению, при малых перемещениях в направ­лении скорости жидкости величина внутри скобок не изме­няется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока

Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него W=0, то уравнение движения (40.8) дает нам соотношение

так что

Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего боль­шего, чем утверждение о сохранении энергии. Подоб­ные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли на­столько важна и настолько проста, что мне бы хотелось пока­зать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что про­вели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6, а).

Фиг. 40.6. Движение жидкости в трубке.

Поскольку стенки трубки образуются ли­ниями тока, то жидкость через них не протекает. Обо­значим площадь на одном конце трубки через A1, скорость жидкости через v1, плотность через r1 а потенциальную энер­гию через j1. Соответствующие величины на другом конце трубки мы обозначим через A2, v2, r2 и j2. После короткого интервала времени Dt жидкость на одном конце передвинется на расстояние v1Dt, а жидкость на другом конце — на расстоя­ние v2Dt (см. фиг. 40.6, б). Сохранение массы требует, чтобы масса, которая вошла через A1была равна массе, которая


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "7. Физика сплошных сред"

Книги похожие на "7. Физика сплошных сред" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 7. Физика сплошных сред"

Отзывы читателей о книге "7. Физика сплошных сред", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.