» » » Ричард Фейнман - 6a. Электродинамика


Авторские права

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








Как можно найти закон преобразования полей? Нам изве­стны законы преобразования j и А, и мы знаем, как выражаются поля через j и А, так что отсюда нетрудно найти преобра­зования для Е и В. (Вы можете подумать, что у каждого вектора есть нечто, дополняющее его до четырехвектора, так что, напри­мер, с вектором Е можно связать некую величину, которая сде­лает его четырехвектором. То же самое относится и к В. Увы, это не так. Все оказывается совершенно непохожим на то, что можно было бы ожидать.) Для начала возьмем магнитное поле В, которое, конечно, равно СXА. Теперь мы знаем, что х -, у- и z-компоненты векторного потенциала — это только одна часть, помимо них есть еще и t-компонента. Кроме того, мы знаем, что у аналога оператора С наряду с производными по х, у и z есть также производная по t. Давайте же попытаемся найти, что получится, если мы произведем замену у на t, или z на t, или еще что-нибудь в этом духе.

Прежде всего обратите внимание на форму слагаемых, об­разующих компоненты В:

В слагаемые, образующие x-компоненту В, входят только z- и y-компоненты А. Предположим, мы назвали эту комби­нацию производных и компонент «zy-штукой», или сокращенно Fzy . Мы просто имеем в виду, что

(26.15)

Подобной же «штуке» равна и компонента В, но на сей раз это будет «xz-штука», а Вz, разумеется, равна «yx-штуке». Таким образом,

(26.16)

Посмотрим теперь, что получится, если мы попытаемся смастерить «штуки» типа «t», т. е. Fxtили Ftz(ведь природа дол­жна быть красива и симметрична по х, у, z и t). Что такое, например, Ftz? Разумеется, она равна

Но вспомните, ведь At=j, поэтому предыдущее выражение равно

Такое выражение нам уже встречалось раньше. Это почти z-компонента поля Е. Почти, за исключением неверного знака. Впрочем, мы забыли, что в четырехмерном градиенте произ­водная по t идет со знаком, противоположным производным по х, у и z. Так что на самом деле нам следует взять более умное обобщение, т. е. считать

(26.17)

Теперь она в точности равна — Ег. Так же можно построить Ftxи Ftvи получить три выражения:

А что, если оба индекса внизу будут t? Или оба будут х? Тогда мы получим выражения типа

т. е. просто нуль.

Итак, у нас есть шесть таких «F-штук». Кроме них, есть еще шесть полученных перестановкой индексов, но они не дают ни­чего нового, ибо

Fxy= -Fyx

и т. п. Таким образом, из шести возможных попарных комбина­ций четырех значений индексов мы получили шесть различных физических объектов, которые представляют компоненты В и Е.

Чтобы записать члены F в общем виде, мы воспользуемся обобщенными индексами m и v, каждый из которых может быть 0, 1, 2 или 3, обозначающих соответственно (как и в обычных четырехвекторах) t, x, у или z. Кроме того, все будет прекрасно согласовываться с нашими четырехмерными обозначениями, если Fmvопределить как

Fmv =СmAv-СvAm, (26.19)

помня при этом, что

То, что мы нашли, можно сформулировать так: в природе су­ществуют шесть величин, которые представляют различные сто­роны чего-то одного. Электрическое и магнитное поля, кото­рые в нашем обычном медленно движущемся мире (где нас не беспокоит конечность скорости света) рассматривались как со­вершенно отдельные векторы, в четырехмерном пространстве уже не будут ими. Они — часть некоторой новой «штуки».

Наше физическое «поле» на самом деле шестикомпонентный объект Fmv . Вот как обстоит дело в теории относительности. По­лученные результаты для Fmvсобраны в табл. 26.1.

Таблица 26.1 · компоненты fmv

Вы видите, что мы сделали фактически обобщение векторного произведения. Мы начали с ротора и с того факта, что его свой­ства преобразования в точности такие же, как свойства преобра­зования двух векторов — обычного трехмерного вектора А и оператора градиента, который, как нам известно, ведет себя подобно вектору. Возвратимся на минуту к обычному вектор­ному произведению в трехмерном пространстве, например к мо­менту количества движения частицы. При движении частицы в плоскости важной характеристикой оказывается комбина­ция (xvy—yvx), а при движении в трехмерном пространстве появляются три подобные величины, которые мы назвали мо­ментом количества движения:

Затем (хотя сейчас вы, может быть, об этом и забыли) мы сотво­рили в гл. 20 (вып. 2) чудо: эти три величины превратились в компоненты вектора. Чтобы сделать это, мы приняли искус­ственное соглашение: правило правой руки. Нам просто повезло. И повезло потому, что момент Ltj (i и j равны х, у или z) ока­зался антисимметричным объектом, т. е.

Lij= - Lji, Lii=0.

Из девяти возможных его величин независимы лишь три. И вот оказалось, что при изменении системы координат эти три опе­ратора преобразуются в точности, как компоненты вектора.

То же свойство позволяет записать в виде вектора и элемент поверхности. Элемент поверхности имеет две части, скажем dx и dy, которые можно представить вектором da, ортогональным к поверхности. Но мы не можем сделать этого же для четырех измерений. Что будет нормалью к элементу dxdy? Куда она направлена — по оси z или по t?

Короче говоря, для трех измерений оказывается, что ком­бинацию двух векторов типа Lij, к счастью, снова можно пред­ставить в виде вектора, поскольку возникают как раз три члена, которые, выходит, преобразуются подобно компонен­там вектора. Для четырех измерений это, очевидно, невоз­можно, поскольку независимых членов шесть, а шесть ве­личин вы никак не представите в виде четырех.

Однако даже в трехмерном пространстве можно составить такую комбинацию векторов, которую невозможно представить в виде вектора. Предположим, мы взяли какие-то два вектора a=(ах, ay, az) и b=(bx, by, bz) и составили всевозможные различ­ные комбинации компонент типа axbx, axbyи т. д. Всего получается девять возможных величин:

Эти величины можно назвать Т' ij.

Если теперь перейти в повернутую систему координат (скажем, относительно оси z), то при этом компоненты а и b изменяются. В новой системе ахдолжно быть заменено на

Аналогичные вещи происходят и с другими компонентами. Девять компонент изобретенной нами величины Tij., разу­меется, тоже изменяются. Например, Txy хbупереходит в

или

Каждая компонента Tij это линейная комбинация ком­понент tij.

Итак, мы обнаружили, что из векторов можно сделать не только векторное произведение aXb, три компоненты которого преобразуют подобно вектору. Искусственно мы из двух векто­ров tij . можем сделать «произведение» другого сорта. Девять его компонент преобразуются при вращении по сложным правилам, которые можно выписать. Подобный объект, требующий для своего описания вместо одного индекса два, называется тензо­ром. Мы построили тензор «второго ранга», но так же можно поступить и с тремя векторами и получить тензор третьего ранга, а из четырех векторов — тензор четвертого ранга и т. д. Тензором первого ранга является вектор.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.