» » » Ричард Фейнман - 6a. Электродинамика


Авторские права

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








Контур транзистора и радиолампы имеет одну замечатель­ную способность, которой лишены контуры, включающие одни импедансы: действительная часть эффективного импеданса zэфф может стать отрицательной. Мы видели, что действительная часть z представляет потери энергии.

Фиг. 22.29. Низкочастотная эквивалентная схема транзистора.

Но важная характеристи­ка транзисторов и радиоламп состоит в том, что они снабжают контур энергией. (Конечно, они ее не «вырабатывают»; они бе­рут энергию у цепи постоянного тока, у источника тока, и превращают ее в энергию переменного тока.) Стало быть, появ­ляется возможность получить контур с отрицательным сопро­тивлением. Такой контур имеет интересное свойство: если под­ключить его к импедансу с положительной действительной ча­стью, т. е. к положительному сопротивлению, и устроить все так, чтобы сумма двух действительных частей обратилась в нуль, то в этом объединенном контуре рассеяния энергии не будет. А раз нет потерь энергии, то любое переменное напряжение, стоит его однажды включить, никогда больше не исчезнет. Это основ­ная идея работы осциллятора или генератора сигналов, который можно использовать в качестве источника переменного тока какой угодно частоты.

* Кое-кто говорит, что предметы мы обязаны называть словами «катушка» и «конденсатор», а их свойства — соответственно «индуктивность» и «емкость». Но я предпочитаю пользоваться словами, какие слышу в лаборатории, где почти всегда и про физическую катушку, и про ее само­индукцию L говорят «индуктивность». Точно так же предпочитают гово­рить «емкость», «сопротивление», хотя часто можно услышать и слово «кон­денсатор».

*Эта эквивалентная схема годится только для низких частот. На высокой частоте эквивалентная схема усложняется, в нее надо включить различные, так называемые «паразитические», емкости и индуктивности.

Глава 23

ПОЛЫЕ РЕЗОНАТОРЫ

§ 1. Реальные элементы цепи

§ 2. Конденсатор на больших частотах

§ 3. Резонансная полость

§ 4. Собственные колебания полости

§ 5. Полости и резонансные контуры

Повторить; гл. 2. (вып. 2) «Резонанс»; гл. 49 (вып. 4)

«Собственные колебания».

§ 1. Реальные элементы цепи

Если посмотреть на любую цепь, состоящую из идеальных импедансов и генераторов, со стороны какой-нибудь пары клемм, то при данной частоте она будет эквивалентна генера­тору $, последовательно соединенному с импе­дансом z. Если приложить к этим клеммам на­пряжение V и вычислить из уравнений силу тока, то между током и напряжением должна получиться линейная зависимость. Поскольку все уравнения линейны, то и I должно зави­сеть от V линейно и только линейно. А самое общее линейное выражение можно записать в виде

(23.1)

Вообще-то и z и e могут как-то очень сложно за­висеть от частоты w. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генера­тор e(w), последовательно соединенный с им­педансом z(w).

Можно поставить и обратный вопрос: имеет­ся какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны e и z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физи­чески осмысленной функции z(w), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.

Фиг. 23.1. Эквивалентная схема реального сопротивления.

Известно, что ток, протекающий через реальное сопротивле­ние, создает магнитное поле. Значит, каждое реальное сопротив­ление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциа­лов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения про­порционально меняется и заряд, так что у сопротивления имеет­ся и какая-то емкость. Следует ожидать, что эквивалентная схе­ма реального сопротивления должна иметь такой вид, как на фиг. 23.1. Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех часто­тах, для которых оно предназначено, wL много меньше R, а l/wC — много больше R. Поэтому «паразитическими» элемен­тами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротив­ление станет похожим на резонансный контур.

Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iwL. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фак­тически эквивалентна индуктивности, последовательно соеди­ненной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.

Фиг. 23.2. Эквивалентная схема реальной индуктивности на ма­лых частотах.

Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.

Может быть, надо пользоваться контуром, смахиваю­щим скорее на фиг. 23.2,6, где по­следовательно расставлено несколько маленьких R и L? Однако общий

импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.

Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто меж­ду витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких ча­стотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для бо­лее высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной мо­дели.

Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как wL, значит, он на низких частотах обращается в нуль — «замы­кается накоротко», и мы замечаем только сопротивление прово­да. Если частота начинает расти, то wL вскоре становится боль­ше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/wС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктив­ность. Оттого-то ток в катушке прыгает с одного витка на дру­гой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хоте­лось бы, чтобы ток шел по виткам катушки, но сам-то он выби­рает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродина­мике, скажем, если вы захотите заставить что-то двигаться бы­стрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непрохо­димый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.

§ 2. Конденсатор на больших частотах

А теперь обсудим подробнее поведение конденсатора — гео­метрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, по­тому что геометрия пары обкладок много проще геометрии ка­тушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним ге­нератором парой проводов. Если зарядить конденсатор посто­янным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.