» » » Ричард Фейнман - 6. Электродинамика


Авторские права

Ричард Фейнман - 6. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6. Электродинамика"

Описание и краткое содержание "6. Электродинамика" читать бесплатно онлайн.








Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*

это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать

Единственный член первого порядка, который будет ме­няться, таков:

Во втором члене U* подынтегральное выражение примет вид

изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл

Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно

Это нужно проинтегрировать по x, у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по х по частям. Это приведет к добавочному дифференци­рованию j по х. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством

Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*

это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать

Единственный член первого порядка, который будет ме­няться, таков:

Во втором члене U* подынтегральное выражение примет вид

изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл

Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно

Это нужно проинтегрировать по x, у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по x по частям. Это приведет к добавочному дифференци­рованию j по x. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством

Проинтегрированный член равен нулю, так как мы считаем f равным нулю на бесконечности. (Это отвечает обращению h в нуль при t1и t2. Так что наш принцип более точно формули­руется следующим образом: U* для правильного j меньше, чем для любого другого

j(х, у, z), обладающего теми же зна­чениями на бесконечности.) Затем мы проделаем то же с у и с z. Наш интеграл DU* обратится в

Чтобы эта вариация была равна нулю при любом произволь­ном f, коэффициент при f должен быть равен нулю. Значит,

Мы вернулись к нашему старому уравнению. Значит, наше «минимальное» предложение верно. Его можно обобщить, если слегка изменить выкладки. Вернемся назад и проинтегрируем по частям, не расписывая все покомпонентно. Начнем с того, что напишем следующее равенство:

Продифференцировав левую часть, я могу показать, что она в точности равна правой. Это уравнение подходит для того, чтобы провести интегрирование но частям. В нашем интеграле DU* мы заменяем Сj·Сf на —fС2j+С·(fС j) и затем интегри­руем это по объему. Член с дивергенцией после интегрирования по объему заменяется интегралом по поверхности:

А поскольку мы интегрируем по всему пространству, то по­верхность в этом интеграле лежит на бесконечности. Значит, f=0, и мы получаем прежний результат.

Только теперь мы начинаем понимать, как решать задачи, в которых мы не знаем, где расположены все заряды. Пусть мы имеем проводники, на которых как-то распределены заряды. Если потенциалы на всех проводниках зафиксированы, то наш принцип минимума все еще разрешается применять. Интегри­рование в U* мы проведем только по области, лежащей снаружи всех проводников. Но раз мы не можем на проводниках менять j, то на их поверхности f=0, и поверхностный интеграл

тоже равен нулю. Остающееся объемное интегрирование нужно проделывать только в промежутках между провод­никами.

И мы, конечно, снова получаем уравнение Пуассона

Мы, стало быть, показали, что наш первоначальный интеграл U* достигает минимума и тогда, когда он вычисляется в про­странстве между проводниками, каждый из которых находится при фиксированном потенциале [это значит, что каждая проб­ная функция j(х, у, z) должна равняться заданному потенциалу проводника, когда (х, у, z) — точки поверхности проводника]. Существует интересный частный случай, когда заряды рас­положены только на проводниках. Тогда

и наш принцип минимума говорит нам, что в случае, когда у каждого проводника есть свой заранее заданный потенциал, потенциалы в промежутках между ними пригоняются так, что интеграл U* оказывается как можно меньше. А что это за интеграл? Член Сj — это электрическое поле. Значит, интеграл — это электростатическая энергия. Правильное поле и есть то единственное, которое из всех полей, получаемых как градиент потенциала, отличается наименьшей полной энер­гией.

Я хотел бы воспользоваться этим результатом, чтобы решить какую-нибудь частную задачу и показать вам, что все эти вещи имеют реальное практическое зна­чение. Предположим, что я взял два проводника в форме цилин­дрического конденсатора.

У внутреннего проводника потен­циал равен, скажем, V, а у внеш­него— нулю. Пусть радиус внут­реннего проводника будет равен а, а внешнего — b. Теперь мы можем предположить, что распределение потенциалов между ними — любое.

Но если мы возьмем правильное значение j и вычислим

, то должна получиться энергия системы 1/2CV2.

Так что с помощью нашего принципа можно подсчитать и емкость С. Если же мы возьмем неправильное распределение потенциала и попытаемся этим методом прикинуть емкость конденсатора, то придем к чересчур большому значению емкости при фикси­рованном V. Любой предполагаемый потенциал j, не точно совпадающий с истинным его значением, приведет и к невер­ной величине С, большей, чем нужно. Но если неверно выбран­ный потенциал j является еще грубым приближением, то ем­кость С получится уже с хорошей точностью, потому что по­грешность в С — величина второго порядка по сравнению с погрешностью в j.

Предположим, что мне неизвестна емкость цилиндрического конденсатора. Тогда, чтобы узнать ее, я могу воспользоваться этим принципом. Я просто буду испытывать в качестве потен­циала разные функции j до тех пор, пока не добьюсь наиниз­шего значения С. Допустим, к примеру, что я выбрал потен­циал, отвечающий постоянному полю. (Вы, конечно, знаете, что на самом деле поле здесь не постоянно; оно меняется как 1/r.) Если поле постоянно, то это означает, что потенциал ли­нейно зависит от расстояния. Чтобы напряжение на провод­никах было каким нужно, функция j должна иметь вид


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6. Электродинамика"

Книги похожие на "6. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6. Электродинамика"

Отзывы читателей о книге "6. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.