» » » Ричард Фейнман - 6. Электродинамика


Авторские права

Ричард Фейнман - 6. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6. Электродинамика"

Описание и краткое содержание "6. Электродинамика" читать бесплатно онлайн.








Теперь возвратимся назад и закончим наши расчеты магнит­ного поля. Для Вхмы получили (21.21) и (21.22). Поэтому

(21.1')

С помощью точно таких же выкладок мы придем к

И все это можно объединить в одну красивую векторную фор­мулу:

(21.23)

А теперь взгляните на нее. Прежде всего на больших удале­ниях (когда r велико) следует принимать в расчет только р. Направление В дается вектором pXr, перпендикулярным и к радиусу r, и к ускорению (фиг. 21.4). Все сходится с тем, что получилось бы из формулы (21.1').

Теперь посмотрите (к этому мы не привыкли) на то, что про­исходит поблизости от заряда. В гл. 14, § 7 (вып. 5) мы вывели закон Био и Савара для магнитного поля элемента тока. Мы нашли, что элемент тока jdV привносит в магнитное поле сле­дующий вклад:

(21.24)

Вы видите, что эта формула с виду очень похожа на первое слагаемое в (21.23), если только вспомнить, что р — это ток. Но разница все же есть. В (21.23) ток надо подсчитывать в момент (t-r/с), а в (21.24) этого нет. На самом деле, однако, (21.24) для малых r все еще годится, потому что второе слагае­мое в (21.23) стремится уничтожить эффект запаздывания из первого слагаемого. Вместе оба они приводят при малых r к результату, очень близкому к (2124).

Фиг. 21.4. Поля излучения В и Е колеблющегося диполя.

В этом можно убедиться следующим образом. Когда r мало, (t-r/с) не очень отличается от t, и в (21.23) скобки можно раз­ложить в ряд Тэйлора. Первый член разложения дает

n в том же порядке по r

Если их сложить, члены с р уничтожатся и слева останется незапаздывающий ток р, т. е. р(t) плюс члены порядка (r/с)2 и выше [например, 1/2(r/с)2Р"']. Эти члены при достаточно малых r (малых настолько, что за время r ток р заметно не меняется) будут очень малы.

Стало быть, (21.23) приводит к полям, очень похожим на те, которые дает теория с мгновенным действием, гораздо более по­хожим на них, чем на поля теории с мгновенным действием и с задержкой; эффекты задержки первого порядка компенсируют­ся вторым членом. Статические формулы очень точны, намного более точны, чем вам могло бы показаться. Конечно, компенса­ция чувствуется только вблизи от заряда. Для далеких точек эти поправки уже ничего не спасают, потому что временное за­паздывание приводит к очень большим эффектам и в конечном счете к важному члену 1/r — к эффекту излучения.

Перед нами все еще стоит задача расчета электрического поля и доказательства того, что оно совпадает с (21.1'). Правда, уже чувствуется, что на больших расстояниях ответ получится такой, как надо. Мы знаем, что вдали от источников, где воз­никает распространяющаяся волна, Е перпендикулярно к В (и к r), как на фиг. 21.4, и что с В=Е. Значит, Е пропорциональ­но ускорению р", как и предсказывалось формулой (21.1').

Чтобы получить электрическое поле на всех возможных рас­стояниях, нужно найти электростатический потенциал. Когда мы подсчитывали интеграл токов для А, желая получить (21.18), то сделали приближение: мы пренебрегли малозамет­ным изменением r в члене с запаздыванием. Для электростати­ческого потенциала этого делать нельзя, потому что тогда у нас получилось бы {/r, умноженное на интеграл от плотности за­ряда, т. е. на константу. Такое приближение чересчур грубо. Надо обратиться к высшим порядкам. И вместо того, чтобы пу­таться в этих прямых расчетах высших приближений, можно поступить иначе — определить скалярный потенциал из равен­ства (21.6), используя уже найденное значение векторного по­тенциала. Дивергенция А в этом случае просто равна dAJdz, поскольку Ахи Ayтождественно равны нулю. Дифференцируя точно так же, как это делалось выше при вычислении В, получаем

Или в векторных обозначениях

Из равенства (21.6) получается уравнение для j:

Интегрирование по t просто убирает надо всеми р по одной точке:

(Постоянная интегрирования отвечала бы некому наложенному статическому полю, которое, конечно, может существовать, но мы считаем, что у выбранного нами колеблющегося диполя ста­тического поля нет.) Теперь мы можем из

найти электрическое поле Е. После утомительных (хоть и пря­мых) выкладок [при этом нужно помнить, что p(t-r/с) и его производные по времени зависят от х, у и z через запаздывание r/с] мы получаем

где

(21.27)

Это выглядит довольно сложно, но интерпретируется просто. Вектор р* — это дипольный момент с запаздыванием и с «по­правкой» на запаздывание, так что два члена с р* в (21.26) при малых r дают просто статическое поле диполя [см. гл. 6 (вып. 5), выражение (6.14)]. Когда r велико, то член с р преобладает над остальными, и электрическое поле пропорционально ускорению зарядов в направлении поперек r и само направлено вдоль

проекции р на плоскость, перпендикулярную к r.

Этот результат согласуется с тем, что мы получили бы, применяя формулу (21.1'). Конечно, эта формула — более об­щая; она годится для любого движения, а не только для мало­заметных движений, для которых запаздывание r в пределах всего источника можно считать постоянным [как (21.26)]. Во всяком случае, теперь мы укрепили столбами все наше преж­нее изложение свойств света, за исключением лишь некоторых вопросов из гл. 34 (вып. 3), которые связаны с последней частью выражения (21.26). Мы можем теперь перейти к получению поля быстродвижущихся зарядов. Это приведет нас к релятивист­ским эффектам [гл. 34 (вып. 3)].

§5. Потенциалы движущегося заряда; общее решение Льенара и Вихерта

В предыдущем параграфе мы пошли на упрощение при вы­числении интеграла для А, рассматривая только небольшие скорости. Но при этом мы шли таким путем, которым легко можно прийти и к новым выводам. Поэтому сейчас мы заново предпри­мем расчет потенциалов точечного заряда, движущегося уже, как ему захочется (даже с релятивистской скоростью). Как только мы получим этот результат, у нас в руках окажутся электромагнитные свойства электрических зарядов во всей их полноте. Даже формулу (21.1') можно будет тогда легко полу­чить, взяв только нужные производные. И наш рассказ удастся, наконец, довести до конца. Итак, запаситесь терпе­нием!

Попробуем подсчитать в точке 1, у1, z1) скалярный по­тенциал j(1), создаваемый точечным зарядом (вроде электро­на), движущимся любым, каким угодно образом. Под «точеч­ным» зарядом подразумевается очень маленький заряженный шарик, такой маленький, как только можно себе представить, с плотностью заряда р(х, у, z). Потенциал j можно найти из (21.15):

(21.28)

На первый взгляд кажется (и почти все так и подумают), что ответ состоит в том, что интеграл от r по такому «точечному» заряду равен просто общему заряду q, т. е. что

Через r'12здесь обозначен радиус-вектор от заряда в точке (2) к точке (7), измеренный в более раннее время (t—r12/c). Эта формула ошибочна.

Фиг. 21.5. «Точечный» заряд (рассматриваемый как неболь­шое распределение зарядов в форме куба), движущийся со скоростью v к точке (1).

Правильный ответ такой:

(21.29)

где vr' компонента скорости заряда, параллельная r12, т. е. направленная к точке (1). Сейчас я объясню, почему это так. Чтобы легче было следить за моими доводами, я сперва проведу расчет для «точечного» заряда в форме небольшого заряженного кубика, который движется к точке (1) со ско­ростью v(фиг. 21:5). Сторона куба будет а, это число пусть будет много меньше r12 [расстояния от центра заряда до точки (1)].

Чтобы оценить величину интеграла (21.28), мы вернемся к основному определению: запишем его в виде суммы

(21.30)

где ri расстояние от точки (1) к i-му элементу объема DVi, а ri-— плотность заряда в DVi в момент ti=(t-ri/с). Поскольку все ri>>а, удобно будет выбрать все DVi в виде тонких прямо­угольных ломтиков, перпендикулярных к r12 (фиг. 21.6).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6. Электродинамика"

Книги похожие на "6. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6. Электродинамика"

Отзывы читателей о книге "6. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.