» » » Ричард Фейнман - 5b. Электричество и магнетизм


Авторские права

Ричард Фейнман - 5b. Электричество и магнетизм

Здесь можно скачать бесплатно "Ричард Фейнман - 5b. Электричество и магнетизм" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
5b. Электричество и магнетизм
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "5b. Электричество и магнетизм"

Описание и краткое содержание "5b. Электричество и магнетизм" читать бесплатно онлайн.








Хотя физики недавно, к своему удивлению, обнаружили, что не все законы природы всегда инвариантны по отношению к зеркальным отражениям, тем не менее законы электромаг­нетизма обладают этой фундаментальной симметрией.

* Или, короче,─ тесла. ─ прим. ред.

*Потом мы увидим, что такие предположения, вообще говоря, неправильны для электромагнитных сил!

*Это и есть магнитная проницаемость пустоты.

Глава 14

МАГНИТНОЕ ПОЛЕ В РАЗНЫХ СЛУЧАЯХ

§1.Векторный потенциал

§2.Векторный потенциал заданных токов

§3. Прямой провод

§4.Длинный соленоид

§5.Поле маленькой петли; магнитный диполь

§6. Векторный потенциал цепи

§7.3акон Био—Савара

§ 1, Векторный потенциал

В этой главе мы продолжим разговор о магнитостатике, т, е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

(14.1)

и

(14.2)

На этот раз нам нужно решить эти уравне­ния математически самым общим образом, а не ссылаться на какую-нибудь особую симметрию или на интуицию. В электростатике мы нашли прямой способ вычисления поля, когда из­вестны положения всех электрических зарядов: скалярный потенциал j дается просто инте­гралом по зарядам, как в уравнении (4.25) на стр. 77. Если затем нужно знать электри­ческое поле, то его получают дифференцирова­нием j. Мы покажем сейчас, что для нахожде­ния поля В существует аналогичная процедура, если известна плотность тока j всех движу­щихся зарядов.

В электростатике, как мы видели (из-за того, что rot от Е везде равен нулю), всегда можно представить Е в виде градиента от ска­лярного поля j. А вот rot от В не везде равен нулю, поэтому представить его в виде градиента, вообще говоря, невозможно. Однако диверген­ция В везде равна нулю, а это значит, что мы можем представить В в виде ротора от другого векторного поля. Ибо, как мы видели в гл. 2, § 8, дивергенция ротора всегда равна нулю. Следовательно, мы всегда можем выразить В через поле, которое мы обозначим А:

(14.3)

Или, расписывая компоненты:

(14.4)

Запись B=СXA гарантирует выполнение (14.1), потому что обязательно

Поле А называется векторным потенциалом.

Вспомним, что скалярный потенциал j оказывается не полностью определенным. Если мы нашли для некоторой зада­чи потенциал j, то всегда можно найти столь же хороший дру­гой потенциал j', добавив постоянную:

Новый потенциал j' дает те же электрические поля, потому что градиент СС есть нуль; j' и j отвечают одной и той же картине.

Точно так же у нас может быть несколько векторных по­тенциалов А, приводящих к одним и тем же магнитным полям. Опять-таки, поскольку В получается из А дифференцированием, то прибавление к А константы не меняет физики дела. Но для А свобода больше. Мы можем добавить к А любое поле, которое есть градиент от некоторого скалярного поля, не меняя при этом физики. Это можно показать следующим образом. Пусть у нас есть А, которое в какой-то реальной задаче дает правиль­ное поле В. Спрашивается, при каких условиях другой век­торный потенциал А', будучи подставлен в (14.3), дает то же самое поле В. Значит, А и А' имеют одинаковый ротор

Поэтому

Но если ротор вектора есть нуль, то вектор должен быть гра­диентом некоторого скалярного поля, скажем y, так что А'-A=Сy. Это означает, что если А есть векторный потен­циал, отвечающий данной задаче, то при любом y

(14.5)

также будет векторным потенциалом, в одинаковой степени удовлетворяющим данной задаче и приводящим к тому же полю В.

Обычно бывает удобно уменьшить «свободу» А, накладывая на него произвольно некоторое другое условие (почти таким же образом мы считали удобным — довольно часто — выбирать потенциал ср равным нулю на больших расстояниях). Мы можем, например, ограничить А, наложив на него такое условие, чтобы дивергенция А чему-нибудь равнялась. Мы всегда можем это сделать, не задевая В. Так получается потому, что, хотя А' и А имеют одинаковый ротор и дают одно и то же В, они вовсе не обязаны иметь одинаковую дивергенцию. В самом деле, С·A' = С·A+С2y, и, подбирая соответствующее y, можно придать С·A' любое значение.

Чему следует приравнять С·А? Выбор должен обеспечить наибольшее математическое удобство и зависит от нашей задачи. Для магнитостатики мы сделаем простой выбор

С·A = 0. (14.6)

(Потом, когда мы перейдем к электродинамике, мы изменим наш выбор.) Итак, наше полное определение А в данный момент есть СXA=B и С·А=0.

Чтобы привыкнуть к векторному потенциалу, посмотрим сначала, чему он равен для однородного магнитного поля В0. Выбирая ось z в направлении В0, мы должны иметь

(14.7)

Рассматривая эти уравнения, мы видим, что одно из возможных решений есть

Или с тем же успехом можно взять

Еще одно решение есть комбинация первых двух

Ясно, что для каждого поля В векторный потенциал А не един­ственный; существует много возможностей.

Фиг. 14.1. Однородное маг­нитное поле В, направленное по оси z, соответствует векторному потенциалу А (А=Вr'/2), который вращается вокруг оси z. т' — расстояние до оси z.

Третье решение [уравнение (14.8)] обладает рядом интерес­ных свойств. Поскольку x-компонента пропорциональна -y, а y-компонента пропорциональна -+x, то вектор А должен быть перпендикулярен вектору, проведенному от оси z, кото­рый мы обозначим r' (штрих означает, что это не вектор рас­стояния от начала). Кроме того, величина А пропорциональна Ц(x2+y2) и, следовательно, пропорциональна r'. Поэтому А (для однородного поля) может быть записано просто

(14.9)

Векторный потенциал А равен по величине Br' /2, и вращается вокруг оси z, как показано на фиг. 14.1. Если, например, поле В есть поле внутри соленоида вдоль его оси, то векторный по­тенциал циркулирует точно таким же образом, как и токи в соленоиде.

Векторный потенциал однородного поля может быть полу­чен и другим способом. Циркуляция А вдоль любой замкнутой петли Г может быть выражена через поверхностный интеграл от СXА с помощью теоремы Стокса [уравнение (3.38), стр. 63]

(14.10)

Но интеграл справа равен потоку В сквозь петлю, поэтому

(14.11)

Итак, циркуляция А вдоль всякой петли равна потоку В сквозь петлю. Если мы возьмем круглую петлю радиуса r' в плоско­сти, перпендикулярной однородному полю В, то поток будет в точности равен

Если выбрать начало отсчета в центре петли, так что А можно считать направленным по касательной и функцией толь­ко от r', то циркуляция будет равна

Как и раньше, получаем

В только что разобранном примере мы вычисляем вектор­ный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.

§ 2. Векторный потенциал заданных токов

Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):

откуда, конечно, следует

Это уравнение для магнитостатики; оно похоже на уравнение

(14.13)

для электростатики.

Наше уравнение (14.12) для векторного потенциала ста­нет еще более похожим на уравнение для j, если перепи­сать СX(СX А), используя векторное тождество [см. уравне­ние (2.58) стр. 44]

(14.14)

Поскольку мы выбрали С·А=0 (и теперь вы видите, по­чему), уравнение (14.12) приобретает вид

(14.15)

Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.

Это векторное уравнение, конечно, распадается на три урав­нения

и каждое из этих уравнений математически идентично уравнению


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "5b. Электричество и магнетизм"

Книги похожие на "5b. Электричество и магнетизм" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 5b. Электричество и магнетизм"

Отзывы читателей о книге "5b. Электричество и магнетизм", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.