» » » Ричард Фейнман - 5. Электричество и магнетизм


Авторские права

Ричард Фейнман - 5. Электричество и магнетизм

Здесь можно скачать бесплатно "Ричард Фейнман - 5. Электричество и магнетизм" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
5. Электричество и магнетизм
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "5. Электричество и магнетизм"

Описание и краткое содержание "5. Электричество и магнетизм" читать бесплатно онлайн.








Лучше всего пользоваться абстрактным представлением о поле. Жаль, конечно, что оно абстрактно, но ничего не поде­лаешь. Попытки представить электрическое поле как движение каких-то зубчатых колесиков или с помощью силовых линий или как напряжения в каких-то материалах потребовали от физиков больше усилий, чем понадобилось бы для того, чтобы просто получить правильные ответы на задачи электродина­мики. Интересно, что правильные уравнения поведения света в кристаллах были выведены Мак-Куллохом еще в 1843 г. Но все ему говорили: «Позвольте, ведь нет же ни одного реального материала, механические свойства которого могли бы удовлет­ворить этим уравнениям, а поскольку свет — это колебания, которые должны происходить в чем-то, постольку мы не можем поверить этим абстрактным уравнениям». Если бы у его совре­менников не было этой предвзятости, они бы поверили в пра­вильные уравнения поведения света в кристаллах намного раньше того, чем это на самом деле случилось.

А что касается магнитных полей, то можно высказать следующее замечание. Предположим, что вам, в конце концов, удалось нарисовать картину магнитного поля при помощи каких-то линий или каких-то шестеренок, катящихся сквозь простран­ство. Тогда вы попытаетесь объяснить, что происходит с двумя зарядами, движущимися в пространстве параллельно друг другу и с одинаковыми скоростями. Раз они движутся, то они ведут себя как два тока и обладают связанным с ними магнитным по­лем (как токи в проводах на фиг. 1.8). Но наблюдатель, который мчится вровень с этими двумя зарядами, будет считать их неподвижными и скажет, что никакого магнитного поля там нет. И «шестеренки», и «линии» пропадают, когда вы мчитесь рядом с предметом! Все, чего вы добились,— это изобрели новую проблему. Куда могли деваться эти шестерни?! Если вы чертили силовые линии — у вас появится та же забота. Не только нельзя определить, движутся ли эти линии вместе с за­рядами или не движутся, но и вообще они могут полностью исчезнуть в какой-то системе координат.

Мы бы еще хотели подчеркнуть, что явление магнетизма — это на самом деле чисто релятивистский эффект. В только что рассмотренном случае двух зарядов, движущихся параллельно друг другу, можно было бы ожидать, что понадобится сделать релятивистские поправки к их движению порядка v2/c2. Эти поправки должны отвечать магнитной силе. Но как быть с силой взаимодействия двух проводников в нашем опыте (фиг. 1.8)? Ведь там магнитная сила — это вся действующая сила. Она не очень-то смахивает на «релятивистскую поправку». Кроме того, если оценить скорости электронов в проводе (вы сами можете это проделать), то вы получите, что их средняя скорость вдоль провода составляет около 0,01 см/сек. Итак, v2/с2 равно при­мерно 10-25. Вполне пренебрежимая «поправка». Но нет! Хоть в этом случае магнитная сила и составляет 10-25 от «нормаль­ной» электрической силы, действующей между движущимися электронами, вспомните, что «нормальные» электрические силы исчезли в результате почти идеального баланса из-за того, что количества протонов и электронов в проводах одинаковы. Этот баланс намного более точен, чем 1/1025, и тот малый реля­тивистский член, который мы называем магнитной силой,— это единственный остающийся член. Он становится преобладаю­щим.

Почти полное взаимное уничтожение электрических эффек­тов и позволило физикам изучить релятивистские эффекты (т. е. магнетизм) и открыть правильные уравнения (с точно­стью до v2/с2), даже не зная, что в них происходит. И по этой-то причине после открытия принципа относительности законы электромагнетизма не пришлось менять. В отличие от механи­ки они уже были правильны с точностью до v2/с2.

§ 6. Электромагнетизм в науке и технике

В заключение мне хочется закончить эту главу следующим рассказом. Среди многих явлений, изучавшихся древними грека­ми, были два очень странных. Первое: натертый кусочек янта­ря мог поднять маленькие клочки папируса, и второе: близ го­рода Магнезия были удивительные камни, которые притягивали железо. Странно думать, что это были единственные известные грекам явления, в которых проявлялись электричество и магне­тизм. А почему только это и было им известно, объясняется прежде всего сказочной точностью, с которой сбалансированы в телах заряды (о чем мы уже упоминали). Ученые, жившие в позднейшие времена, раскрыли одно за другим новые явления, в которых выражались некоторые стороны тех же эффектов, связанных с янтарем и с магнитным камнем. Сейчас нам ясно, что и явления химического взаимодействия и, в конечном счете, саму жизнь нужно объяснять с помощью понятий элек­тромагнетизма.

И по мере того как развивалось понимание предмета элек­тромагнетизма, появлялись такие технические возможности, о которых древние не могли даже мечтать: стало возможным посылать сигналы по телеграфу на большие расстояния, бесе­довать с человеком, который находится за много километров от вас, без помощи какой-либо линии связи, включать огромные энергетические системы — большие водяные турбины, соеди­ненные многосоткилометровыми линиями проводов с другой машиной, которую пускает в ход один рабочий простым поворо­том колеса; многие тысячи разветвляющихся проводов и десятки тысяч машин в тысячах мест приводят в движение различные механизмы на фабриках и в квартирах. Все это вращается, двигается, работает благодаря нашему знанию законов электро­магнетизма.

Сегодня мы используем и еще более тонкие эффекты. Гигант­ские электрические силы можно сделать очень точными, их можно контролировать и использовать на всякий лад. Наши приборы так чувствительны, что мы способны узнать, что сей­час делает человек только по тому, как он воздействует на электроны, заключенные в тонком металлическом прутике за сотни километров от него. Для этого только нужно приспосо­бить этот прутик в качестве телевизионной антенны!

В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электроди­намики. На фоне этого важного научного открытия граждан­ская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием.

* Нужно только договориться о выборе знака циркуляции.

Глава 2

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРНЫХ ПОЛЕЙ

§1, Понимание физики

§2.Скалярные и векторные поля — Т и h

§3. Производные нолей —градиент

§4.0ператор ▽

§5.Оверации с ▽

§6. Дифференциальное уравнение потока тепла

§7.Вторые производные векторных полей

§8.Подвохи

Повторить гл.1 (вып. 1) «Векторы»

§ 1. Понимание физики

Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишком запутанным и не поддающимся анализу путем решения дифферен­циальных уравнений. Но можно все же полу­чить хорошее представление о поведении си­стемы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изу­чение. Это поможет нам приобрести способ­ность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой сторо­ны, ни одна из вспомогательных, эвристиче­ских моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Урав­нения обладают тем преимуществом, что, во-первых, они фундаментальны, а

во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом за­быть.

Чтобы начать понимать, что должно про­изойти в тех или иных условиях, вам понадо­бится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается раз­ница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них ма­тематически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вкла­да в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким понима­нием уравнений.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "5. Электричество и магнетизм"

Книги похожие на "5. Электричество и магнетизм" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 5. Электричество и магнетизм"

Отзывы читателей о книге "5. Электричество и магнетизм", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.