» » » Ричард Фейнман - 4. Кинетика. Теплота. Звук


Авторские права

Ричард Фейнман - 4. Кинетика. Теплота. Звук

Здесь можно скачать бесплатно "Ричард Фейнман - 4. Кинетика. Теплота. Звук" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
4. Кинетика. Теплота. Звук
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "4. Кинетика. Теплота. Звук"

Описание и краткое содержание "4. Кинетика. Теплота. Звук" читать бесплатно онлайн.








Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и пред­положим (в классической механике это так), что энергии внут­ренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вра­щательную энергию и мы получаем другие значения у. Наилуч­ший способ измерения g это измерение удельной теплоемкости, характеризующей изменение энергии при изменении темпера­туры. К этому способу мы еще вернемся, а пока предполо­жим, что нам удалось экспериментально определить g с по­мощью кривой PVg , соответствующей адиабатическому сжатию.

Попробуем вычислить g для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, g равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двух­атомный газ можно представить как собрание пар атомов, меж­ду которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах; обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r0 (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно за­висела от удаления от равновесной конфигурации, то мы обна­ружили бы, что кислород есть смесь сравнимых количеств O2 и одиночных атомов кислорода. А мы знаем, что в кислороде при­сутствует очень мало одиночных атомов кислорода, а это озна­чает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r0, то нам понадо­бится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому ос­циллятору, и, в самом деле, отличной моделью молекулы кисло­рода могут служить два соединенных пружинкой атома.

Но чему же равна полная энергия молекулы при температу­ре Т? Мы знаем, что кинетическая энергия каждого из атомов равна 3/2 kT, так что кинетическая энергия обоих атомов равна 3/2kT +3/2kT. Можно распределить эту энергию иначе: тогда те же самые 3/2 плюс 3/2 будут выглядеть как кинетическая энергия центра масс (3/2), кинетическая энергия вращения (2/2) и кинетическая энергия колебаний (1/2). Известно, что на долю кинетической энергии колебаний приходится 1/2, потому что это одномерное движение, а каждой степени свободы соответствует l/2kT. Обращаясь к вращениям, мы можем вы­делить две оси вращения, что соответствует двум независимым движениям. Мы представляем себе атомы в виде точек, которые не могут вращаться вокруг соединяющей их линии. Но на всякий случай запомним о таком предположении, потому что если мы упремся где-то в тупик, то, может быть, здесь обна­ружится корень зла. Нас должен интересовать еще и другой вопрос: чему равна потенциальная энергия колебаний, вели­ка ли она? Средняя потенциальная энергия гармонического осциллятора равна средней кинетической энергии, т.е. также l/2kT. Полная энергия молекулы U = 7/2kT, или kT=2/7U на атом. Это означает, что g равно 9/7, а не 5/3, т. е. g=1,286. Можно сравнить эти числа с действительно измеренными значениями g, приведенными в табл. 40.1. Взгляните сначала на гелий; это одноатомный газ, и значение g очень близко к 5/3; отклонение от этого значения, вероятно, есть просто след­ствие экспериментальных неточностей, хотя при столь низких температурах между атомами могут появиться силы взаимодей­ствия. Криптон и аргон — еще два одноатомных газа — также дают согласующиеся значения в пределах ошибки эксперимента.

Таблица 40.1 · ИЗМЕРЕННЫЕ ЗНАЧЕНИЯ g ДЛЯ РАЗЛИЧНЫХ ГАЗОВ

Перейдем к двухатомным газам. Тут же обнаружится, что значение g для водорода, равное 1,404, не согласуется с теоре­тическим значением 1,286. Очень близкое значение дает и кисло­род, 1,399, но с теоретическим это снова не согласуется. Для йодистого водорода g равно просто 1,40. Начинает казаться, что мы нашли общий закон: для двухатомных молекул g равно 1,40. Но нет, поглядите дальше. Для брома мы получаем 1,32, а для иода 1,30. Поскольку 1,30 довольно близко к 1,286, то можно считать, что экспериментальное значение g для иода согласуется с теоретическим, а кислород представляет собой исключение. Это уже неприятно. То, что верно для одной молекулы, неверно для другой, и нам, по-видимому, надо про­явить хитроумие, чтобы объяснить это.

Давайте рассмотрим еще более сложные молекулы, состоя­щие из большого числа частей, например С2Н6 — этан. Молекула атома состоит из восьми разных атомов, и все они качаются и вращаются в самых разных комбинациях, так что полная ве­личина внутренней энергии должна складываться из огромного числа kT, по крайней мере 12kT только для одной кинетичес­кой энергии, поэтому g-1 должно быть очень близко к нулю, a g почти в точности равно единице. И действительно, значение g для этана меньше, чем в предыдущих случаях, но 1,22— не так

уж мало, во всяком случае, больше l1/12, чему должно быть

равно g, если учесть только кинетическую энергию. Этого вообще нельзя понять!

Ну а дальше совсем плохо, ибо двухатомную молекулу нельзя рассматривать как абсолютно жесткую, даже в пределе. Даже если связь между атомами так сильна, что они не могут и пошевелиться, все равно нужно считать, что они колеблются. Колебательная энергия всегда равна kT, поскольку она не зависит от силы связи. Но если представить себе двухатомную молекулу абсолютно жесткой, остановить колебания и выбро­сить эту степень свободы, то мы получим U=5/2 kT и g=1,40 для двухатомных газов. Казалось бы, это подходит и для Н2, и для O2. Но вопрос по-прежнему остается открытым, потому что g и для кислорода, и для водорода зависит от температуры! На фиг. 40.6 показаны результаты нескольких измерений. Для Н2 значение g изменяется от 1,6 при

-185°С до 1,3 при 2000°С. В случае водорода изменения g еще больше, но и в случае кислорода g явно стремится возрасти при падении температуры.

Фиг. 40.6. Эксперимен­тальные значения g как функция температуры для водорода и кисло­рода.

Классическая теория пред­сказывает не зависящее от температуры значение g=1,286.

§ 6. Поражение классической физики

Итак, приходится сказать, что мы натолкнулись на труд­ности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение g. Если пустить в ход другие виды энергии, то вопреки фактам g очень приблизится к единице. Все известное нам из класси­ческой теоретической физики только ухудшает положение. Нам известно, например, что каждый атом содержит электроны, и атомные спектры обязаны своим существованием внутрен­ним движениям электронов; каждый электрон должен иметь по крайней мере l/2kT кинетической энергии и еще кое-что из потенциальной, а когда все это складывается, то g становится еще меньше. Просто смешно. И явно что-то не так.

Первая замечательная работа по динамической теории газов была сделана Максвеллом в 1859 г. Исходя из идей, с которыми мы только что познакомились, он сумел точно объяснить очень много известных явлений, таких, как закон Бойля, теорию диф­фузии, вязкость газов и другие вещи, о которых мы еще будем говорить в следующей главе. Подводя итог всем этим великим достижениям, он писал: «Наконец, установив необходимое со­отношение между поступательным и вращательным движе­нием несферических частиц (он имел в виду теорему о l/2kT), мы доказали, что в системе из таких частиц не может выпол­няться известное соотношение между двумя теплоемкостями». Он говорит здесь о g (позднее мы увидим, что эта величина связана с двумя разными способами измерения удельной теплоемкости) и замечает, что никто не в состоянии дать вер­ного ответа.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "4. Кинетика. Теплота. Звук"

Книги похожие на "4. Кинетика. Теплота. Звук" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 4. Кинетика. Теплота. Звук"

Отзывы читателей о книге "4. Кинетика. Теплота. Звук", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.